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Abstract 

Many automated systems for detecting threats are 
based on matching a new database record to known 
attack types. However, this approach can only spot 
known threats and thus researchers have also be­
gun to use unsupervised approaches based on de­
tecting outliers or anomalous examples. A popular 
method of finding these outliers is to use the dis­
tance to an example’s k nearest neighbors as a mea­
sure of unusualness. However, existing algorithms 
for finding distance-based outliers have poor scaling 
properties, making it difficult to apply them to large 
datasets typically available in security domains. In 
this paper, we propose modifications to a simple, but 
quadratic, algorithm for finding distance-based out­
liers, and show that it achieves near linear time scal­
ing allowing it to be applied to real data sets with 
millions of examples and many features. 

Keywords: outlier detection, anomaly detection, 
nearest neighbors, aviation security 

Introduction 
Detecting threats by analyzing the examples in a 
database is an important problem in security do­
mains. For example, researchers in data mining are 
developing algorithms to detect computer intrusions 
from audit records [21, 10, 19]. The U.S. Federal 
Aviation Administration developed the Computer 
Assisted Passenger Pre-screening System (CAPPS) 
[8, 11, 25], which screens airline passengers on the 

basis of their flight records and flags individuals for 
additional checked baggage screening. 

One approach to addressing this task is developing 
sophisticated models of a threat and how they man­
ifest themselves in a data set record. For example, 
although the exact details of CAPPS are not pub­
lished, it is thought to assign higher threat scores to 
cash payments [25]. However, explicit threat models 
can only capture known attack types. Another ap­
proach is based on outlier or anomaly detection where 
one looks for unusual examples that appear suspicious 
and may require additional screening [20, 10, 22]. 

Outlier detection has a long history in statistics 
[3, 14], but has largely focussed on univariate data 
with a known distribution. These two limitations 
have restricted the ability to apply these types of 
methods to large real-world databases which typi­
cally have many different fields and have no easy way 
of characterizing the multivariate distribution of ex­
amples. Other researchers, beginning with the work 
by Knorr and Ng [17], have taken a non-parametric 
approach and proposed using an example’s distance 
to its nearest neighbors as a measure of unusualness 
[2, 23, 18, 10]. Eskin et al. [10], and Lane and Brod­
ley [20] applied distance-based outliers to detecting 
computer intrusions from audit data. 

Although distance is an effective non-parametric 
approach to detecting outliers, the drawback is the 
amount of computation time required. Straightfor­
ward algorithms, such as those based on nested loops, 
typically require O(N 2) distance computations. This 
quadratic scaling means that it will be very difficult 
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to mine outliers as we tackle increasingly larger data 
sets. This is a major problem for security screening 
databases where there are often millions of records. 
For example, U.S. airlines carry over 600 million pas­
sengers per year[8]. 

Recently, researchers have presented many differ­
ent algorithms for efficiently finding distance-based 
outliers. These approaches vary from spatial index­
ing trees to partitioning of the feature space with clus­
tering algorithms [23]. The main goal is developing 
algorithms that scale to large real data sets. 

In this paper, we show that one can modify a sim­
ple algorithm based on nested loops, which would 
normally have quadratic scaling behavior, to yield 
near linear time mining on real, large, and high­
dimensional data sets. Our goal is to develop al­
gorithms for mining distance-based outliers that can 
feasibly be applied to help detect threats in large se­
curity data sets. Specifically, our contributions are:

 We show that an algorithm based on nested loops 
in conjunction with randomization and a simple 
pruning rule has near linear time performance 
on many large real data sets. Previous work 
reported quadratic performance for algorithms 
based on nested loops [17, 18, 23].

 We demonstrate that our algorithm scales to real 
data sets with millions of examples and many 
features, both continuous and discrete. To our 
knowledge we have run our algorithm on the 
largest reported data sets to date and obtained 
among the best scaling results for real data sets. 
Other work has reported algorithms with linear 
time mining but only for low-dimensional prob­
lems (less than 5) [17, 18] or have only tested the 
scaling properties on simple synthetic domains.

 We analyze why our algorithm performs so well. 
Under certain conditions, the results suggest 
that the time to process non-outliers, which are 
the large majority of points, does not depend on 
the size of the data set.

 We apply our algorithm to an airline passenger 
database and we discuss some limitations of our 
approach on this database. 

The remainder of this paper is organized as fol­
lows. In the next section, we review the notion of 
distance-based outliers and present a simple nested 
loop algorithm that will be the focus of this paper. 
In Section 3, we show that although our simple al­
gorithm has poor worst case scaling properties, for 
many large, high-dimensional, real data sets the ac­
tual performance is extremely good and is close to 

linear. In Section 4, we analyze our algorithm and 
attempt to explain the performance with an average 
case analysis. In Section 5, we present examples of 
discovered outliers to give the readers a qualitative 
feel for how the algorithm works on real data. Finally, 
we conclude this paper by discussing limitations and 
directions for future work. 

2 Distance-Based Outliers 
A popular method of identifying outliers is by exam­
ining the distance to an example’s nearest neighbors 
[23, 18, 17, 2]. In this approach, one looks at the lo­
cal neighborhood of points for an example typically 
defined by the k nearest examples (also known as 
neighbors). If the neighboring points are relatively 
close, then the example is considered normal; if the 
neighboring points are far away, then the example 
is considered unusual. The advantages of distance­
based outliers are that no explicit distribution needs 
to be defined to determine unusualness, and that it 
can be applied to any feature space for which we can 
define a distance measure. 

Given a distance measure on a feature space, there 
are many different definitions of distance-based out­
liers. Three popular definitions are 

1. Outliers are the examples for which there are less 
than p other examples within distance d [17, 18]. 

2. Outliers are the top n examples whose distance 
to the kth nearest neighbor is greatest [23]. 

3. Outliers are the top	 n examples whose average 
distance to the k nearest neighbors is greatest 
[2, 10]. 

There are several minor differences between these 
definitions. The first definition does not provide a 
ranking and requires specifying a distance parameter 
d. Ramaswamy et al. [23] argue that this parameter 
could be difficult to determine and may involve trial 
and error to guess an appropriate value. The sec­
ond definition only considers the distance to the kth 
neighbor and ignores information about closer points. 
Finally, the last definition accounts for the distance 
to each neighbor but is slower to calculate than def­
inition 1 or 2. However, all of these definitions are 
based on a nearest neighbor density estimate [12] to 
determine the points in low probability regions which 
are considered outliers. 

Researchers have tried a variety of approaches to 
find these outliers efficiently. The simplest are those 
using nested loops [17, 18, 23]. In the basic version 
one compares each example with every other exam­
ple to determine its k nearest neighbors. Given the 



 

neighbors for each example in the data set, simply 
select the top n candidates according to the outlier 
definition. This approach has quadratic complexity 
as we must make all pairwise distance computations 
between examples. 

Another method for finding outliers is to use a spa­
tial indexing structure such as a KD-tree [4], R-tree 
[13], or X-tree [5] to find the nearest neighbors of each 
candidate point [17, 18, 23]. One queries the index 
structure for the closest k points to each example, and 
as before one simply selects the top candidates ac­
cording to the outlier definition. For low-dimensional 
data sets this approach can work extremely well and 
potentially scales as N log N if the index tree can 
find an example’s nearest neighbors in log N time. 
However, index structures break down as the dimen­
sionality increases. For example, Breunig et al. [7] 
used a variant of the X-tree to do nearest neighbor 
search and found that the index only worked well for 
low-dimensions, less than 5, and performance dra­
matically worsened for just 10 or 20 dimensions. In 
fact, for high-dimensional data they recommended se­
quential scanning over the index tree. 

A few researchers have proposed partitioning the 
space into regions and thus allowing faster determi­
nation of the nearest neighbors. For each region, 
one stores summary statistics such as the minimum 
bounding rectangle. During nearest neighbor search, 
one compares the example to the bounding rectangle 
to determine if it is possible for a nearest neighbor to 
come from that region. If it is not possible, all points 
in the region are eliminated as possible neighbors. 
Knorr and Ng [17] partition the space into cells that 
are hyper-rectangles. This yields a complexity linear 
in N but exponential in the number of dimensions. 
They found that this cell based approach outper­
formed the nested loop algorithm, which is quadratic 
in N , only for four or fewer dimensions. Others use 
a linear time clustering algorithm to partition the 
data set [23, 10]. With this approach, Ramaswamy 
et al. demonstrated much better performance com­
pared with the nested loop and indexing approaches 
on a low-dimensional synthetic data set. However, 
their experiments did not test how it would scale on 
larger and higher-dimensional data. 

Finally, a few researchers have advocated projec­
tions to find outliers. Aggrawal and Yu [1] suggest 
that because of the curse of dimensionality one should 
focus on finding outliers in low-dimensional projec­
tions. Angiulli and Pizzuti [2] project the data in 
the full feature space multiple times onto the interval 
[0,1] with Hilbert space filling curves. Each succes­
sive projection improves the estimate of an example’s 
outlier score in the full-dimensional space. Their ini­

tial scaling results are promising, and appear to be 
close to linear, however they have reported results on 
only two synthetic domains. 

In this paper, we show that the simplest type of 
algorithm based on nested loops in conjunction with 
randomization and a pruning rule gives state-of-the­
art performance. Table 1 shows our variation of the 
nested loop algorithm in more detail. The function 
distance computes the distance between any two ex­
amples using, for example, Euclidean distance for 
continuous features and Hamming distance for dis­
crete features. The score function can be any mono­
tonically decreasing function of the nearest neigh­
bor distances such as the distance to the kth nearest 
neighbor, or the average distance to the k neighbors. 

The main idea in our nested loop algorithm is that 
for each example in D we keep track of the closest 
neighbors found so far. When an example’s closest 
neighbors achieve a score lower than the cutoff we 
remove the example because it can no longer be an 
outlier. As we process more examples, the algorithm 
finds more extreme outliers and the cutoff increases 
along with pruning efficiency. 

Note that we assume that the examples in the data 
set are in random order. The examples can be put 
into random order in linear time and constant main 
memory with a disk-based randomization algorithm. 
One repeatedly shuffles the data set into random piles 
and then concatenates them in random order. 

In the worst case, the performance of the algo­
rithm is very poor. Because of the nested loops, 
it could require O(N 2) distance computations and 
O(N/blocksize ∅ N) data accesses. 

3	 Experiments on Scaling Per­
formance 

In this section, we examine the empirical performance 
of the simple algorithm on several large real data sets. 
The primary question we are interested in answering 
is “How does the running time scale with the number 
of data points for large data sets?” In addition, we 
are also interested in understanding how the running 
time scales with k, the number of nearest neighbors. 

To test our algorithm we selected the five real and 
one synthetic data set summarized in Table 2. These 
data sets span a range of problems and have very 
different types of features. We describe each in more 
detail. 

Corel Histogram. Each example in this data set 
encodes the color histogram of an image in a col­
lection of photographs. The histogram has 32 



 

 

 

 

Table 1: A simple algorithm for finding distance-based outliers. Lowercase variables represent scalar values 
and uppercase variables represents sets. 

Procedure: Find Outliers
 
Input: k, the number of nearest neighbors; n, the number of outliers to return; D, a set of examples
 
in random order.
 
Output: O, a set of outliers.
 
Let maxdist(x, Y ) return the maximum distance between x and an example in Y .
 
Let Closest(x, Y , k) return the k closest examples in Y to x.
 
begin
 
1. c + 0 // set the cutoff for pruning to 0 
2. O + 0 // initialize to the empty set 
3. while B + get-next-block(D) { // load a block of examples from D 
4. Neighbors(b) + 0 for all b in B 
5. for each d in D {
6. for each b in B, b =← d {
7. if |Neighbors(b)| < k or distance(b,d) < maxdist(Neighbors(b),b) {
8. Neighbors(b) + Closest(b,Neighbors(b) U d, k) 
9. if score(Neighbors(b),b) < c {
10. remove b from B 
11. } } } } 
12. O + Top(B U O,n) // keep only the top n outliers 
13. c + min(score(o)) for all o in O // the cutoff is the score of the weakest outlier 
14. }
15. return O 
end 

bins corresponding to eight levels of hue and four 
levels of saturation. 

Airline Passenger. We obtained 90 days’ worth 
of passenger data from a major U.S. airline. This 
database includes the information that each pas­
senger provided to the airline (or to a travel 
agent) when buying an airline ticket. The pas­
senger data is best seen as a relational database. 
For example, each record can contain multiple 
passengers traveling together, and each group 
of passengers can have multiple flight segments. 
For the experiments described in this paper, we 
flattened one day’s worth of data to create a ta­
ble in which each row represents one passenger 
flight segment. We selected 15 fields from this 
flattened table which we believe could be useful 
for passenger screening. We intend to scale up to 
90 days’ worth of data and to develop anomaly 
detection algorithms that operate directly on re­
lational databases without first flattening them 
(see Section 6). 

KDDCUP 1999. The KDDCUP data contains 
a set of records that represent connections to 
a military computer network where there have 
been multiple intrusions by unauthorized users. 

The raw binary TCP data from the network has 
been processed into features such as the connec­
tion duration, protocol type, number of failed 
logins, and so forth. 

Census. This data set contains the responses 
from the 1990 decennial Census in the United 
States. The data has information on both house­
holds and individuals. We divided the responses 
into two tables, one that stores household records 
and another that stores person records, and 
treated each table as its own data set. Both the 
Household and Person data sets have a variety 
of geographic, economic, and demographic vari­
ables. Our data comes from the 5% State public 
use microdata samples and we used the short 
variable list [24]. In total, the 5% State sample 
contains about 5.5 million household and 12.5 
million person records. For our experiments we 
used a maximum of 5 million records for each 
data set. 

Normal 30D. This is a synthetic data set gener­
ated from a 30-dimensional normal distribution 
centered on the origin with a covariance matrix 
equal to the identity matrix. 



We obtained the data sets Corel Histogram and KD-
DCup 1999 from the UCI KDD Archive [15] and the 
census data from the IPUMS repository [24]. 

Table 2: Description of Data Sets 

Data Set Features Cont. Examples 
Corel Histogram 32 32 68,040 
Airline Passenger 15 3 439,381 
KDDCup 1999 42 34 4,898,430 
Household 1990 23 9 5,000,000 
Person 1990 55 20 5,000,000 
Normal 30D 30 30 1,000,000 

We preprocessed the data by normalizing all con­
tinuous variables to the range [0,1] and converting 
all categorical variables to an integer representation. 
We then randomized the order of examples in the 
data sets. Randomizing a file can be done in O(N) 
time and constant main memory with a disk-based 
shuffling algorithm as follows: Sequentially process 
each example in the data set by randomly placing it 
into one of n different piles. Recombine the piles in 
random order and repeat this process a fixed number 
of times. 

We ran our experiments on a lightly loaded Pen­
tium 4 computer with a 1.5 GHz processor and 1GB 
RAM running Linux. We report the wall clock time, 
the time a user would have to wait for the output, in 
order to measure both CPU and I/O time. The re­
ported times do not include the time needed for the 
initial randomization of the data set and represent 
one trial. Preliminary experiments indicated that al­
ternate randomizations did not have a major effect 
on the running time. To measure scaling, we gener­
ated smaller data sets by taking the first n samples 
of the randomized set. Unless otherwise noted, we 
ran experiments to return the top 30 anomalies with 
k = 5, a block size (|B|) of 1000 examples, and we 
used the average distance to the nearest k neighbors 
as the score function. 

Our implementation of the algorithm was written 
in C++ and compiled with gcc version 2.96 with the 
-O3 optimization flag. We accessed examples in the 
data set sequentially using standard iostream func­
tions and we did not write any special routines to 
perform caching. The total memory footprint of the 
executing program was typically less than 3 MB. 

Figure 1 shows the total time taken to mine outliers 
on the six data sets as the number of examples varied. 
Note that both the x and y axes are in a logarithmic 
scale. Each graph shows three lines. The bottom 
line represents the theoretical time necessary to mine 
the data set given a linear algorithm based on the 
running time for N = 1000. The middle line shows 

the actual running times of our system. Finally, the 
top line shows the theoretical time needed assuming 
a quadratic algorithm based on scaling the running 
time for N = 1000. 

These results show that our simple algorithm gives 
extremely good scaling performance that is near lin­
ear time. The scaling properties hold for data sets 
with both continuous and discrete features and the 
properties hold over several orders of magnitude of 
increasing data set size. The plotted points typi­
cally follow a straight line on the log-log graph which 
means that the relationship between the y and x 

baxis variables is of the form y = ax or log y = 
log a+b log x, where a and b are constants. Thus, the 
algorithm scales with a polynomial complexity with 
an exponent equal to the slope of the line. Table 3 
presents for each data set the slope of a regression line 
fit to the points in Figure 1. The algorithm obtained 
a polynomial scaling complexity with exponent vary­
ing from 1.13 to 1.32. 

Table 3: Slope b of the regression fit relating log t = 
log a + b log N (or t = aN b) where t is the total time 
(CPU + I/O), N is the number of data points, and 
a is constant factor. 

Data Set slope 
Corel Histogram 1.13 
Airline Passenger 1.20 
KDDCup 1999 1.13 
Household 1990 1.32 
Person 1990 1.16 
Normal 30D 1.15 

One exception to the straight line behavior is the 
last point plotted for the Airline Passenger data set. 
Up to 100,000 examples the running time follows a 
straight line very closely with b = 1.08, however, the 
last point at N = 439, 000 represents a large increase 
in time. We believe this is caused by the way we 
flattened the original relational database. For ex­
ample, if there are two tables X and Y , with each 
example in X pointing to several different objects in 
Y , our flattened database will have examples with 
form (X1, Y1), (X1, Y2), (X1, Y3), (X2, Y4), . . . and 
so forth. As it is likely that the closest neighbors of 
(X1, Y1) will be the examples (X1, Y2) and (X1, Y3) 
our algorithm may have to scan the entire data set un­
til it finds them to obtain a low score. For small ran­
dom subsets, it is unlikely that the related examples 
would be present and so this does not affect scaling 
performance. Flattening destroys the independence 
between examples which we will see in Section 4 is 
necessary for good performance.1 

1We are also considering alternative problem formulations 
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Figure 1: Total time (CPU and I/O) taken to mine outliers as N , the number of points, increases. The top 
and bottom lines represent the theoretical time taken by a quadratic and linear algorithm based on scaling 
the observed time at N = 1000. 

We also examined how the total running time scales 
with k, the number of neighbors and the results for 
Normal 30D and Person (N = 1, 000, 000) are shown 
in Figure 2. The bottom line represents the observed 
time; the curved top line represents the time as­
suming linear scaling based on the timing results for 
k = 5. In these graphs, the y axis is logarithmic and 
the x axis is linear which means that a straight line in­
dicates that the relationship between the y and x axis 
variables is of the form y = aebx or log y = log a + bx 
where a and b are constants. This relationship sug­
gests that the running time scales exponentially with 
k. However, the empirical value of b as determined 
by a regression fit is very small. For Normal 30D 
b = 0.0163 and for Person b = 0.0135. Practically, 
the observed scaling performance is much better than 
linear for k ∪ 100 , mainly because of the large fixed 
computation costs unrelated to k. 

Analysis of Scaling Time 

In this section, we explain with an average case anal­
ysis why randomization in conjunction with pruning 
performs well, especially when much of the past lit­
erature reported that nested loop designs were ex­
tremely slow because of the O(N 2) distance compu­

tations. In particular, both Knorr and Ng [17] and 
Ramaswamy et al. [23] implemented versions of the 
nested loop algorithm and reported quadratic perfor­
mance. 

Consider the number of distance computations 
needed to process an example x. For now we assume 
that we are using outlier definition 2, rather than def­
inition 3 which we used in our experiment, for ease of 
analysis. With this definition an outlier is determined 
by the distance to its kth nearest neighbor. In order 
to process x we compare it with examples in the data 
set until we have either (1) found k neighbors within 
the cutoff distance d, in which case we eliminate it 
as it cannot be an outlier, or (2) we have compared 
it with all N examples in the data set and failed to 
find k neighbors within distance d, in which case it is 
classified as an outlier. 

We can think of this problem as a set of indepen­
dent Bernoulli trials where we keep drawing instances 
until we have found k successes (k examples within 
distance d) or we have exhausted the data set. Let 
�(x) be the probability that a randomly drawn exam­
ple lies within distance d of point x, let Y be a ran­
dom variable representing the number of trials until 
we have k successes, and let P (Y = y) be the prob­
ability of obtaining the kth success on trial y. The 

that preserve independence of examples. probability P (Y = y) follows a negative binomial dis­
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Figure 2: Total time (CPU and I/O) taken to mine outliers as k increases. The top curved line represents 
the theoretical time taken by an algorithm linear in k based on scaling the observed time for k = 5. 

tribution: which represents the expected cost of outliers (i.e, ⎞
y − 1

⎠ we must compare with everything in the database 
�(x)k(1 − �(x))y−k (1)P (Y = y) = and then conclude that nothing is close) does depend k − 1 

on N, yielding an overall quadratic dependency to 
The number of expected samples we need to draw to process N examples in total. However, note that 
process one example x is: we typically set the program parameters to return 

N⎛
⎝
�

a small and possibly fixed number of outliers. Thus N⎛
the first term dominates and we obtain near linear 1 −E[Y ] = P (Y = y) y + P (Y = y) N 
performance. y=k y=k 

(2) One assumption of this analysis is that the cut-
The first term is the expectation of concluding a neg­
ative binomial series within N trials. That is, as we 
are processing an example, we keep drawing more ex­
amples until we have seen k that are within distance 
d, at which point we eliminate it because it cannot be 
an outlier. The second term is the expected cost of 
failing to conclude the negative binomial series within 

⎛ 

N trials, in which case we have examined all N data 
points because the example is an outlier (less than k 
successes in N trials). 

The expectation of a negative binomial series with 
an infinite number of trials is, 

⎞
y − 1

⎠ 

�(x)k(1 − �(x))y−k y = 
k 

off distance is fixed. In practice, the cutoff distance 
changes with different values of N . However, we 
should expect that if the cutoff distance increases 
with larger N , then scaling will be better as �(x) 
is larger and any randomly selected example is more 
likely to be a success (neighbor). Conversely, if the 
cutoff distance decreases, the scaling will be worse. In 
Figure 3 we plotted the relationship between b, the 
empirical scaling factor, and c50K /c5K , the ratio of 
the final cutoffs for N = 50000 and N = 5000 for the 
six data sets used in the previous section. We also 
plotted results for two additional data sets, Uniform 
3D and Mixed 3D, which we believed would be re­

k − 1 �(x) is a three-dimensional data set generated from a uni­y=k 

⎛ 

form distribution between [-0.5,0.5] on each dimen-This is greater than the first term in Equation 2. 
sion. Mixed 3D is a mixture of the uniform data set Combining Equations 2 and 3 yields, 
(99%) combined with a Gaussian (1%) centered on 

N
⎝
�

the origin with covariance matrix equal to the iden­k 
E[Y ] ∪ 1 − P (Y = y) N (4)+ tity matrix. 

�(x) 
y=k 

The results indicate that for many data sets the 
Surprisingly, the first term which represents the cutoff ratio is near or greater than 1. The only 
number of distance computations to eliminate non- data set with an extremely low cutoff ratio was Uni­
outliers does not depend on N . The second term, form3D. The graph also indicates that higher values 
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of the cutoff ratio are associated with better scal­
ing scores (lower b). This supports our theory that 
the primary factor determining the scaling is how the 
cutoff changes as N increases. 
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Figure 3: Empirical scaling factor b versus c50K /c5K , 
the ratio of cutoff scores for N = 50, 000 and N = 
5, 000. 

Figure 4 shows the running time plot for Uniform 
3D and Mixed 3D. We expected Uniform 3D to have 
extremely bad scaling performance because it has no 
true outliers as the probability density is constant 
across the entire space. Increasing N simply increases 
the density of points and drops the cutoff score but 
does not reveal rare outliers. In contrast, the results 
for Mixed3D were extremely good (b = 1.11). In 
this data set, as we increase N we find more extreme 
outliers from the Gaussian distribution and the cutoff 
distance increases, thus improving pruning efficiency. 
Finally, we note that data sets with a true uniform 
distribution are probably rare in real domains. 

Outliers in Census Data 

We have applied our algorithm to mining outliers in 
the Airline Passenger database. However, for secu­
rity reasons, we cannot describe the data set nor the 
discovered outliers in detail. Instead, we present re­
sults from the Household and Person data sets to give 
the readers a qualitative feel for outliers that can be 
mined from large data sets. We report selected re­
sults from running our outlier detection algorithm to 
return the top 30 outliers with k = 5. The full list 
of top 30 outliers for both household and person are 
available online2 and we encourage readers to view 
this list directly. 

2http://www.isle.org/�sbay/papers/siam03/ 

The top outlier in the household database is a sin­
gle family living in San Diego with 5 married couples, 
5 mothers, and 6 fathers. In the census data, a fam­
ily is defined as a group of persons related by blood, 
adoption, or marriage. To be considered a mother or 
father, the person’s child or children must be present 
in the household. The house had a reported value 

� 
of 85K and was mortgaged. The total reported in­

� 
come of the household was approximately 86K for 
the previous year. 

Another outlier is a single-family rural farm house­
hold in Florence, South Carolina. The house is owned 
free and clear by a married couple with no children. 
This example is unusual because the value of the 

� 
house is greater than 400K (not including the land), 

� 
and they reported a household income of over 550K. 

In the person data set one of the most extreme 
outliers was a 90+ year old Black Male with Italian 
ancestry who does not speak English, was enrolled 
in school3 , has a Doctorate degree, is employed as

� � 
a baker, reported 110K income of which 40K was 

� � 
from wages, 20K from business, 10K from farm, 

� � 
15K from welfare, and 20K from investments, has 

a disability which limits but does not prevent work, 
was a veteran of the U.S. armed forces, takes public 
transportation (ferry boat) to work, and immigrated 
to the U.S. 11-15 years ago but moved into his current 
dwelling 21-30 years ago. Clearly, there are inconsis­
tencies in this record and we believe that this record 
represents an improperly completed form. 

A second outlier was a 46 year old, White, widowed 
female living with 9 family members, two of which 
are her own children. She has a disability that lim­
its but does not prevent her work as a bookkeeper or 
accounting clerk in the theater and motion picture in­
dustry. She takes public transportation to work (bus 
or trolley) and it takes her longer than 99 minutes to 
go from home to work. 

A third outlier was a 19 year old, White, female 
with Asian ancestry and Mexican Hispanic origin 
with a disability that limits but does not prevent 

� 
work. She earned 123K in business income, and 

� 
38K in retirement income (which may include pay­

ments for disabilities), and is also enrolled in school. 
Finally, we ask readers to keep in mind that these 

outliers were discovered using a base set of features 
which were not collected for a specific task (e.g., se­
curity screening). In our own work on the airline 
passenger database, we are spending much effort on 
feature engineering to get the most relevant informa­
tion for our algorithm. 

3Taking a course that a high school or college would accept 
for credit would count under Census definitions. 
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Figure 4: Total time (CPU and I/O) taken to mine outliers on data sets. For Uniform 3D b = 1.76, and for 
Mixed 3D b = 1.11. 

Limitations and Future Work 

In this paper, we addressed one roadblock toward 
applying distance-based outlier detection algorithms 
to security screening: dealing with the computation 
time required for large data sets. However, we feel 
that there are several limitations in applying outlier 
detection to security databases and that further re­
search needs to be conducted to address these. 

The largest and most pressing limitation is that 
our work has only addressed finding outliers in the 
data sets that can be represented with a vector space 
or equivalently a single table in a database. Clearly, 
almost all real data sources will be in the form of 
relational databases with multiple tables that relate 
different types of information about each other. 

To address relational data, the simplest solution is 
to flatten the database with join operators to form 
a single table. While this is a convenient solution it 
loses much of the information available. For instance, 
a flattened database cannot easily represent passen­
gers that have a variable number of flight trips. We 
also found that flattening a database could create de­
pendencies between examples and this can reduce the 
effectiveness of randomization and pruning. 

We are currently investigating how we can ex­
tend our algorithm to handle relational data natively. 
There are two research questions that arise. First, 
how does one define a distance metric to compare 
objects which may have a variable number of linked 
objects? There has been some work on defining met­
rics to work on relational data [6, 9, 16]. The central 
idea is to apply a recursive distance measure. That 
is, to compare two objects one starts by comparing 
their features directly, and then moves on to com­

pare linked objects and so on. Second, how does one 
efficiently retrieve an object and its related objects 
to compare them in the context of searching for out­
liers? Retrieving related objects may involve extract­
ing records in a non-sequential ordering and this can 
greatly slow database access. 

A second area we did not address in this paper is 
determining how to set algorithm parameters such as 
k, the distance measure, and the score function. Each 
of these parameters can have a large effect on the dis­
covered outliers. In supervised classification tasks one 
can set these parameters to maximize predictive per­
formance by using a hold out set or cross-validation to 
estimate out-of-sample performance. However, out­
lier detection is unsupervised and no such training 
signal exists. 

Finally, our approach combines randomization and 
pruning to speed the computation of the top out­
liers in the data set. Our method gives exactly the 
same results as computing all N 2 pairwise distances 
between examples and from these distances selecting 
the most extreme outliers. Alternatively, one could 
use a small random subset of examples to determine 
the outliers in the entire data set. This would require 
O(NNs) distance computations where Ns is the size 
of the subset. This subset approach is not guaran­
teed to return the same outliers as performing all N 2 

pairwise comparisons but it may perform adequately. 
Our initial experiments indicate that the correspon­
dence with the full N 2 comparison strongly depends 
on the data set. For example, on Mixed3D a subset 
of 1000 examples was sufficient to give 90% corre­
spondence whereas on the Person data set a subset 
of 1000 points gave less than 30% correspondence and 
1,000,000 examples resulted only in 70% correspon­
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dence. We plan to investigate this issue further. 

Conclusions 
In our work applying outlier detection algorithms to 
large, real databases a major limitation has been scal­
ing the algorithms to handle the volume of data. In 
this paper, we presented an algorithm based on ran­
domization and pruning which finds outliers on many 
real data sets in near linear time. This efficient scal­
ing allowed us to mine data sets with millions of ex­
amples and many features. 
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