Focusing public attention on emerging privacy and civil liberties issues

Genetic Privacy

Top News

  • National Institutes of Health Protects Genetic Privacy of HeLa Cells: The National Institutes of Health has agreed to safeguard Henrietta Lacks's family genetic privacy while still allowing research on the famous HeLa cells. During her fight against an aggressive form of cervical cancer in the 1950s, Henrietta Lacks's cells were given to scientists, without her consent, for experimentation because of their ability to replicate in a lab setting. Her cells are still used today for scientific research. EPIC previously submitted comments to the Department of Health and Human Services and argued for stronger privacy protections for genetic data. More recently, EPIC filed a friend of the court brief with the Supreme Court in Maryland v. King arguing for limited law enforcement access to DNA. For more information, see EPIC: Maryland v. King and EPIC: Genetic Privacy. (Aug. 12, 2013)
  • Supreme Court Rules Against DNA Privacy: A deeply divided Supreme Court ruled Monday that law enforcement may warrantlessly collect DNA samples from people arrested, but not yet convicted, of crimes. In Maryland v. King, the Court held that when the police have probable cause to arrest someone, the collection of DNA is analogous to fingerprinting or photographing. The decision was 5-4. Writing in dissent, Justice Scalia, joined by Justice Ginsburg, Kagan, and Sotomayor, stated "Make no mistake about it: . . . your DNA can be taken and entered into a national database if you are ever arrested, rightly or wrongly, and for whatever reason." EPIC wrote a "friend of the court" brief arguing against warrantless DNA searches. EPIC's brief described the rapid expansion of DNA collection in the United States and the lack of sufficient safeguards for private genetic information. For more information, see EPIC: Maryland v. King and EPIC: Genetic Privacy. (Jun. 3, 2013)
  • Supreme Court to Hear Arguments On Warrantless DNA Collection: Today the U.S. Supreme Court will arguments on whether the Fourth Amendment allows warrantless, suspicion less DNA collection from anyone arrested, but not convicted, of a "serious crime." In Maryland v. King, Maryland will argue that states should be permitted to use DNA to investigate cold cases even when the arrestee is not a suspect. King will explain that the Fourth Amendment requires a probable cause warrant for routine law enforcement investigations. EPIC filed a "friend of the court" brief, joined by the 27 technical experts and legal scholars, that describes how DNA collection and use "has grown dramatically and unpredictably over time." EPIC has asked the U.S. Supreme Court to affirm the decision of the Maryland Supreme Court, which held that a warrant is required for the collection of a DNA sample. For more information, see EPIC: Maryland v. King and EPIC: Genetic Privacy. (Feb. 26, 2013)
  • EPIC Urges Supreme Court to Protect Genetic Privacy: EPIC has filed a "friend of the court" brief in Maryland v. King, arguing that law enforcement's warrantless collection of DNA is unconstitutional. EPIC's brief describes the "dramatic and unpredictable" expansion of the government's DNA collection over the past decade. In the brief for the U.S. Supreme Court, EPIC said that the Fourth Amendment limits "the otherwise unbounded collection and use of the individual's DNA sample by government." The EPIC brief was joined by 26 technical experts and legal scholars.EPIC has previously filed amicus briefs in several DNA cases before federal and state courts. For more information, see EPIC: Maryland v. King and EPIC: Genetic Privacy. (Feb. 4, 2013)
  • New Study Finds Limits in Deidentification of DNA Samples: A recent paper published in Science reveals that deidentified DNA sequences collected for research purposes can be used to identify the subjects under certain circumstances. According to the article, the information posted by the 1,000 Genomes Project - age, state of residence, and full DNA sequence - used in combination with publicly available genealogy data was enough to narrow the search to a few likely individuals. A Science Policy Forum article concludes that this "reveals the need to re-examine the current paradigms for managing the potential identifiability of genomic and other 'omic'-type data." The President's Commission for the Study of Bioethical Issues recently reviewed the ethical and privacy implications of the use and collection of genetic data. And the Supreme Court is set to hear a case next month involving the warrantless collection and use of genetic information by law enforcement agencies. For more information, see EPIC: Maryland v. King and EPIC: Genetic Privacy. (Jan. 17, 2013)
  • Supreme Court to Review DNA Collection Law: The Supreme Court has agreed to hear Maryland v. King, a challenge to the constitutionality of the State's DNA Collection Act. The Act authorizes law enforcement to collect DNA samples from individuals arrested, but not convicted, for certain crimes. The lower court held that the Act was unconstitutional as applied to the defendant because the warrantless collection of DNA from a mere arrestee was an unlawful search and seizure under the Fourth Amendment. The Maryland court previously upheld the Act as applied to convicted felons in State v. Raines. EPIC filed an amicus brief in Raines and other cases involving compelled DNA collection in California, Louisiana, and the District of Columbia. EPIC has argued that the privacy implications of DNA collection are greater than fingerprint collection. A recent report from the President's Commission on Bioethics recommends limiting law enforcement access to DNA information. For more information, see EPIC: Genetic Privacy and EPIC: DNA Act. (Nov. 13, 2012)
  • Presidential Commission Urges Privacy Protections for DNA Data: Noting the rapid advances in the use of genetic data, the report of the Presidential Commission for the Study of Bioethical Issues recommended "a consistent floor of privacy protections covering whole genome sequence data regardless of how they were obtained. These policies should protect individual privacy by prohibiting unauthorized whole genome sequencing without the consent of the individual from whom the sample came." The Commission further said "Only in exceptional circumstances should entities such as law enforcement or defense and security have access to biospecimens or whole genome sequence data for non health-related purposes without consent." The Presidential Commission offered additional recommendations on "Ethical Principles," "Policy and Governance," and "Analysis and Recommendations." Earlier this year, EPIC provided comments to the Commission, and proposed new safeguards for genetic data and limit law enforcement access. EPIC also recommended that the Commission build upon existing genetic privacy and medical laws to enhance individual control over their genetic information. For more information, see EPIC: Genetic Privacy and EPIC: Medical Record Privacy. (Oct. 15, 2012)
  • EPIC Calls for Genetic Privacy Protections: EPIC submitted comments to the Presidential Commission for the Study of Bioethical Issues, urging the advisory panel to protect genetic privacy in large-scale human genome sequence data. The Commission requested comments pertaining to the "privacy of individuals, research subjects, patients, and their families" as the government moves closer to large-scale human genome sequencing. EPIC Advisory Board member, Professor Anita L. Allen serves as a Commissioner for the Presidential advisory panel. EPIC recommended that the Commission build upon genetic privacy and medical laws such as the Genetic Information Nondiscrimination Act("GINA") and the Health Insurance Portability and Accountability Act Privacy Rule to protect genetic data. EPIC also recommended that individuals should be given property rights over their genetic data. For more information, see EPIC: Genetic Privacy and EPIC: Medical Record Privacy. (May. 29, 2012)
  • Minnesota Supreme Court Limits Use of Baby DNA: The Minnesota Supreme Court has ruled that the state Genetic Privacy Act limits the use of blood samples collected from newborns. Minnesota initiated the Newborn Screening Program in 1965 in order to screen children for certain metabolic disorders. Over 73,000 samples are added to the database every year, but the sample were used for other purposes by the Department of Health and outside research organizations. In overruling a lower courts decision, the state Supreme Court found that the samples are "Genetic Information" under the State Genetic Privacy Act and held that "unless otherwise provided, the Department must have written informed consent to collect, use, store, or disseminate [the blood samples]." For more information, see EPIC: Genetic Privacy. (Nov. 17, 2011)
  • EPIC Urges Court to Limit Pre-Trial DNA Collection from Defendants: EPIC filed a 'friend of the court' brief in US v. Pool. The Ninth Circuit case challenges the constitutionality of a federal law requiring every felony defendant to submit a DNA sample as a condition of pre-trial release. The DNA is used to create profiles in a national DNA index system. EPIC observed that "today's science shows that DNA reveals vastly more personal information than a fingerprint," noting "DNA samples contain genetic information that can reveal personal traits such as race, ethnicity and gender, as well as medical risk for conditions such as diabetes." The government keeps the full DNA sample indefinitely, retaining all of an individual's genetic information. A three-judge panel previously upheld the law, but an eleven-judge panel is now rehearing the case. For more information, see EPIC: US v. Pool, and EPIC: Genetic Privacy. (Jul. 26, 2011)
  • HHS to Explore Scope of Personally Identifiable Health Information, Seeks Public comments: The Department of Health and Human Services plans to modify sections of the federal Privacy Rule, issued under HIPAA. The proposed changes would clarify the scope of privacy and confidentiality of genetic information. More specifically, HHS proposes to modify the Privacy Rule, taking into account the Genetic Information Nondiscrimination Act, to prohibit health plans from using or disclosing personally identifiable health information, which would explicitly include genetic information, for underwriting purposes. Public comments on the proposed rule are due December 7, 2009. EPIC is recommending that HHS pay particular attention to the problem of data reidentification. For more information, see EPIC's Genetic Privacy Page. (Oct. 13, 2009)
  • Supreme Court Rejects DNA Access to Prove Innocence: In a 5-4 decision, the Supreme Court rejected the constitutional right of a convicted individual to access his DNA to prove innocence. Chief Justice Roberts held that the task of harnessing "DNA's power to prove innocence without unnecessarily overthrowing the established system of criminal justice...belongs primarily to the legislature." Justice Stevens, writing for four of the justices in dissent, said that "a decision to recognize a limited right of postconviction access to DNA testing would not prevent the States from creating procedures [to] ensure [] that [it] is nonarbitrary." EPIC has filed several amicus briefs advocating limits on the collection and use of genetic material. However, EPIC has also stated that DNA evidence should be available to prove innocence. See EPIC's pages on District Attorney's Office v. Osborne and Genetic Privacy. (Jun. 19, 2009)
  • European Court Rules UK DNA Retention Illegal. Today, the European Court of Human Rights ruled that the world largest DNA database, based in the United Kingdom, violated Article 8 of the European Convention on Human Rights which protects the right to privacy. Privacy International filed an amicus brief in this case. The Europe,an court considered several issues including familial searching, social stigmatization, and the protection of children's rights. The court, sitting as a Grand Chamber, ruled that applicants who have not been convicted of a crime are presumed innocent and that retaining indefinitely their genetic samples, fingerprints and DNA profiles interfered with the right to respect for private life. For more information on DNA database laws, see EPIC's Genetic Privacy page. (Dec. 4)
  • President Signs Genetic Nondiscrimination Act. President Bush has signed in law the Genetic Information Nondiscrimination Act of 2008. The Act prohibits discrimination on the basis of genetic information with respect to health insurance and employment. However, the Act does not address the privacy risks associated with the collection and storage of electronic health records. See EPIC page on Genetic Privacy. (May 21.)
  • U.S. Senate Approves Genetic Privacy Legislation. The U.S. Senate today passed Genetic Information Nondiscrimination Act. The bill, which passed the Senate in 2003 but died in the House, was reintroduced on January 16. The genetic privacy bill addresses the risk that advances in genetics open new opportunities for medical progress and will also give rise to the potential misuse of genetic data to discriminate. The bill seeks to establish a national standard to prohibit genetic discrimination by health insurance providers and employers. Under the bill, these entities cannot require genetic testing, cannot determine premiums or eligibility for insurance or employment based on genetic information, and are limited in their collection and use of genetic data. The bill now goes back to the House; President Bush has said he supports the legislation. (Apr. 24)
  • In June 2007, all 27 EU countries agreed to unrestricted access to genetic information, fingerprints, and car registration information in all EU police databases. Police in one EU country will be able to enter a suspect's genetic data into a database and obtain matches for any other EU countries as well. The accord has raised concern with some European officials who question the security of such databases. The new system will also feature the sharing of fingerprints and pictures for non-EU citizens seeking visas to enter Europe. The system can store the data for up to 70 million people. (February 1, 2008)
  • A 2007 survey conducted by the Genetics and Public Policy Center found that the majority of the 1,199 Americans surveyed support genetic testing for research and health care but 92% also felt concern that genetic test results revealing risk of future disease may be used in ways that are harmful to a person. A large majority would trust doctors with their genetic test results (86%), but few trusted employers to have access to this data (16%). An overwhelming majority felt that a person's genetic test results should not be used to make decisions to deny or limit insurance coverage or hiring and promotion related decisions (93%). (February 1, 2008)
  • In a statement at the National Institutes of Health, President Bush called on Congress to pass legislation to protect genetic privacy, so that "medical research can go forward without an individual fearing personal discrimination". A genetic privacy bill, which passed the Senate in 2003 but died in the House, was reintroduced in the House on January 16. The bill seeks to establish a national standard to prohibit genetic discrimination by health insurance providers and employers. Under the bill, these entities cannot require genetic testing, cannot determine premiums or eligibility for insurance or employment based on genetic information, and are limited in their collection and use of genetic information. (Jan. 18, 2007)

    Update: The bill was passed in the House on April 25, 2007. It is being debated in the Senate. (February 1, 2008)
  • The Minnesota Court of Appeals has struck down a state law authorizing the warrantless, automatic collection of DNA samples from people charged with but not convicted of crimes, calling the law unconstitutional. "[T]he privacy interest of a person who has been charged but not convicted is not outweighed by the state's interest in collecting and analyzing a DNA sample," the court said. The Minnesota case is similar to a case under review in the Fifth Circuit, Kohler v. Englade, in which EPIC submitted a "friend of the court" brief (pdf) arguing that warrantless, suspicionless DNA dragnets are unconstitutional and ineffective. (Nov. 21, 2006)
  • In a challenge to a dragnet search in which the DNA samples of more than 600 individuals were collected by the Baton Rouge police department, the Fifth Circuit Court of Appeals has reversed a lower court and held (pdf) that the DNA search warrant lacked probable cause. The Court rejected the government's claim that it should consider a vague FBI profile to support the warrant application. EPIC submitted a "friend of the court" brief (pdf) arguing that warrantless, suspicionless DNA dragnets are unconstitutional and ineffective. (Nov. 21, 2006)
  • EPIC has submitted an amicus brief (pdf) in Kohler v. Englade, a case in which police identified a man, later cleared, as a suspect in a serial rape-murder investigation. They compelled him to provide a DNA sample after he refused when the police cast a huge DNA dragnet, gathering samples from more than 1,200 men. EPIC argued that the constitution protects a person's privacy interest in his DNA and explained that such dragnets have failed repeatedly to identify perpetrators. (Oct. 12, 2005)
  • On April 27, 2006, the Supreme Court of Canada ruled that a Criminal Code provision that allows for the collection of DNA from designated classes of convicted criminals for data bank purposes does not infringe sections 7 or 8 of the Canadian Charter of Rights and Freedoms. In the case R. v. Rodgers, the majority indicated that the offender's identity as a multiple sex offender was a matter of state interest and as such he did not have a reasonable expectation of privacy with respect to his identity. The court also said that the data bank provisions in the Criminal Code strike an appropriate balance between the privacy interests of individuals and societal interests of identifying dangerous offenders. (February 25, 2008).
  • EPIC has submitted comments urging the Justice Department to identify and ensure compliance with existing privacy protections when preserving biological evidence during the investigation of a federal crime for which an individual is in prison. Congress has stated, "DNA testing has the capacity not only to identify the perpetrators of crimes but also to exonerate the innocent." EPIC argued that the agency should limit access to material that must be preserved under law to government agencies that will use the material to further this legislative purpose. (Jun. 29, 2005)
  • Ninth Circuit Upholds Compelled Disclosure of DNA. In a close 6-5 ruling, the Ninth Circuit Court of Appeals has determined that a parolee can be forced to provide a DNA sample for the FBI's vast national DNA database. In March, EPIC filed a "friend of the court" brief in the case, arguing that DNA contains far more information than a fingerprint and that, in the absence of privacy safeguards, a DNA sample collected for one purpose could be used in the future for unrelated purposes. (Aug. 18, 2004)
  • The British House of Lords rejected the claim that retention of DNA samples and profiles violates the European Convention on Human Rights in cases where an individual is later acquitted or charges are dropped. The decision in the case of Regina v. Chief Constable of South Yorkshire Police (Respondent) ex parte LS (by his mother and litigation friend JB) (FC) (Appellant) and Regina v. Chief Constable of South Yorkshire Police (Respondent) ex parte Marper (FC)(Appellant) Consolidated Appeals notes that samples are retained only for the purpose of investigating and fighting crime, and that the benefit to society from a much larger law enforcement DNA databank outweighs the individual's right to privacy. (July 23, 2004)
  • In a landmark decision, Iceland's Supreme Court ruled (pdf) that the Health Database Act of 1998 does not comply with the country's constitutional privacy protections. The Act authorized the creation and operation of a centralized database of non-personally identifiable health data, with the aim of increasing knowledge and improving health and health services. The Act was challenged in court by Gudmundsdottir, who wanted to prevent the transfer of her deceased father's medical records into the database. The Court ruled that Ms. Gudmundsdottir could not opt out of the database on behalf of her father, but could prevent the transfer of the records because it is possible to infer information about her from the information related to her father's hereditary characteristics. The Court further ruled that removing or encrypting personal identifiers such as name and address is not sufficient to prevent identification of individuals, who might be identified from a combination of factors such as age, municipality of residence, marital status, education and profession, combined with the specification of a particular medical condition. The Court held that the obligation to protect privacy, imposed on the legislature by the Icelandic constitution, could not be replaced by various forms of monitoring entrusted to public agencies and committees. (May 25, 2004)
  • EPIC has filed an amicus brief (pdf) in United States v. Kincade, a Ninth Circuit case concerning whether a parollee can be forced to provide a DNA sample for the FBI's vast national DNA database. EPIC argues that the search violates the Fourth Amendment. The EPIC brief notes that DNA contains far more information than a fingerprint and that, in the absence of privacy safeguards, a DNA sample collected for one purpose could be used in the future for unrelated purposes. (Mar. 1, 2004)
  • The Senate unanimously passed the Genetic Nondiscrimination Act of 2003 (S. 1053) The Act prohibits discrimination in employment and promotion on the basis of genetic information and family history, but would allow employers to perform genetic tests to monitor adverse effects of hazardous workplace conditions. It also prohibits discrimination by health insurers on the basis of genetic information or family history. (Oct. 14, 2003)
  • In US v. Kincade, No. 02-50380, 9th Cir., the court decided that requiring for parolees and inmates to provide DNA samples under the DNA Analysis Backlog Elimination Act of 2000, 42 U.S.C. 14135a, is unconstitutional. The court ruled that the requirement to provide DNA without probable cause violated the Fourth Amendment protections against unreasonable searches and seizures. (October 2, 2003)
  • Floyd M. Wagster Jr. v. Elmer Litchfield et. al, a case in Louisiana, is seeking destruction of DNA samples and genetic profiles of volunteers and others who participated in a criminal investigation. The suit seeks to establish uniform procedures for DNA collection from people who have not been accused or convicted of a crime and for subsequent storage and use of the DNA samples.
  • UK police propose a universal DNA databank that would include all residents. UK police, which already has the largest forensic databank in the world, claims that a universal DNA databank would help fight crime and close unsolved cases. Civil liberties groups are opposed to the creation of a universal forensic databank because of fears that such a databank would be used for other purposes, including research and insurance risk assessment. Growth in the number of people whose DNA is collected and increasing uses made of available DNA (“function creep”) characterized forensic databanks in the past.

Overview

What is DNA, how it can be used

Genetic information about any organism is contained in the organism’s DNA (deoxyribonucleic acid) molecules. DNA is contained in all of the organism’s cells except mature red blood cells. Every cell has two pairs of chromosomes, composed of DNA, except gamete cells (sperm and egg), which have only one set. DNA provides exact instructions for the creation and functioning of the organism. DNA molecules of all organisms contain the same basic physical and chemical components, arranged in different sequences. The genome is an organism’s complete set of DNA.

The current estimate is that humans have between 32,000 and 35,000 genes. About 99.9 percent of the genome is the same in all humans. The arrangement of the remaining components is unique to most individuals. Only identical twins (or triplets, etc.) have identical DNA. Variations in DNA influence how individuals respond to disease, environmental factors such as bacteria, viruses, toxins, chemicals, and to drugs and other therapies. The interaction between genes and environmental factors is not well understood at this time and is the subject of intensive research.

Any properly stored tissue sample can be the source of DNA. ”Handbook of Human Tissue Sources”, published by RAND, estimated that in 1999 there were more than 307 million tissue specimens stored in the United States, and that the number was growing by 20 million per year. These specimens are collected and stored for research, medical treatment, law enforcement, military indentification, blood and tissue banking, fertility treatments and, increasingly, commercial purposes. However, not all tissue collections can be classified as DNA databanks. DNA databanks are composed of a set of tissue specimens, digital DNA profiles, stored in a computer database, and some form of linking between each specimen and the DNA profile derived from it. DNA databanks used in medical and research applications also include links to medical records and family history of individuals whose DNA is stored. Blood and tissue specimens can be preserved indefinitely, and DNA from these specimens can be tested multiple times.

Genetic data poses significant privacy issues because it can serve as an identifier and can also convey sensitive personal information about the individual and his or her family. As genetic science develops, genetic information provides a growing amount of information about diseases, traits, and predispositions. At the same time, smaller and smaller tissue samples are required for testing. In some cases tests can be performed with as little as the root of a single hair or saliva left on a glass from which an individual drank. The ability to derive more information from less and less material creates increasing challenges to privacy because it permits analysis of tiny traces that all humans leave behind unconsciously, such as cells left on computer keys or saliva left on a drinking glass.

The ability of genetic information to provide both identification and sensitive information related to health and other predisposition has led to a lively debate about appropriate privacy protections. Proponents of “genetic exceptionalism” claim that genetic information deserves explicit and stricter protection under the law. They base their argument on the special qualities of genetic material:

  • Ubiquity, i.e., the ability to derive genetic profiles from small physical traces and the longevity of material from which genetic profiles can be derived
  • Ability to reveal information not just about the individual but also about the individual’s family
  • Predictive nature that can point to someone’s future health and traits

Opponents of “genetic exceptionalism” take the position that genetic information is much like other personal information and should be protected in the same way. They point to the fact that “genetic information” is difficult to define because it includes information like family medical history, which has been collected and used by doctors long before the sequencing of the genome. Therefore, they emphasize the importance of context in which genetic information is obtained and used. For example, if genetic information is obtained as part of health care research or treatment, it should be subject to the same privacy and anti-discrimination protections as all other health information.

At present there is no specific protection for DNA information at the federal level in the United States, although several existing laws may provide protection under specific circumstances. For example, protection of medical information under the Privacy Rule of the Health Insurance Portability and Accountability Act (HIPAA) provides protection for genetic information that falls within the HIPAA definition of “protected health information.” The law that would most likely offer protection against genetically based employment discrimination is the Americans With Disabilities Act, which has been interpreted by the Equal Employment Opportunities Commission to include people with genetic predisposition. The Privacy Act of 1974 protects genetic information in the same way as all other personal information that falls under the Act’s protection. Some states have passed legislation that protects DNA information either as a component of health information or separately. These state laws are essentially anti-discrimination laws.

Use of DNA for identification

The use of DNA in identification is growing. DNA “fingerprinting” is a process in which a laboratory creates a profile of specific agreed-upon segments (“loci”) of the DNA molecule. In order to identify a particular individual, the laboratory compares the profile produced from a sample of unknown DNA with the profile produced from a sample known to belong to an identified individual. The laboratory then calculates a statistical probability that a match could take place purely by chance. The more sections match within the two samples, the higher the probability that the DNA belongs to the same individual.

In the United States, the standard for forensic identification requires a comparison of 13 DNA segments. Reliable identification requires that samples be handled carefully to prevent contamination, that a sufficient number of segments be compared, and that researchers set an appropriately high threshold for acceptable probability of a chance match. There have been cases and near-misses of mistaken DNA identification when one or more of these conditions were violated. For example, MSNBC reported that an identification mistake was avoided when the medical examiner insisted on a 99.99 percent certainty of non-random match for the remains of a firefighter who died in the aftermath of the attack on the World Trade Center on September 11, 2001. A sample appeared to match one of the firefighters with 90 percent probability, but additional work showed that at the 99.99 percent level there was a closer match with a different firefighter.

Although DNA identification is generally considered reliable if properly done, there are some people for whom DNA identification could be problematic because of events that took place in the womb during fetal development. As reported in the journal Nature, some people’s cells include DNA of two people. For example, in rare cases fraternal twins may exchange cells before birth and retain those cells, with their twin’s DNA, as adults. Other individuals have different DNA in different tissues of their bodies. The extent of this phenomenon is not known at this time and there has been little discussion of its implications for common uses of genetic identification.

DNA identification has been used in criminal cases, both to convict and to exonerate, in location of missing persons and war dead, in determining paternity and tracing genealogy. It has been reported that the next generation of national identity card in China will carry an 18-digit code representing a citizen’s genetic code. Below we address various uses of DNA identification and the privacy issues related to these uses.

Law enforcement

Law enforcement agencies around the world are increasingly relying on DNA evidence. Although DNA evidence alone can seldom be used to prove that an individual committed a crime, it can be used to place the individual at the crime scene if the scene contains biological evidence. When a DNA profile is derived from evidence at the crime scene, law enforcement officials can search forensic DNA databases for a matching DNA profile to determine whether the evidence came from an individual who committed a prior offence. They can also request DNA samples from suspects or, in some countries, conduct “DNA sweeps” of large numbers of people to find an individual whose DNA matches evidence found at the crime scene. In some cases, when the police have a suspect and know of locations where that individual’s tissue samples may be stored, a search warrant may be used to obtain the sample for analysis. The high confidence placed in DNA matches makes it particularly important that biological evidence be handled carefully to avoid contamination and that other evidence be available to link the individual to the crime. DNA evidence has been challenged in courts of several countries because of improper handling during evidence collection or testing.

According to the 2002 global survey by Interpol, 77 of its 179 member countries perform DNA analysis and 41 member countries have forensic DNA databanks, which include both physical samples and databases of DNA profiles. The percentage of members having DNA databanks is predicted to double in the next few years. Interpol is in negotiations to create protocols for searching and sharing DNA profiles across borders as part of its larger initiative on digital communications between law enforcement authorities.

The rules for inclusion in forensic DNA databanks and the rules that govern access to data, physical specimen retention, and privacy protections vary from country to country. In countries that operate under federal systems, such as US and Australia, rules for forensic DNA databanks can vary from jurisdiction to jurisdiction. The United Kingdom has the largest forensic DNA databank, which holds over 2.5 million samples of those who have been charged with one of a list of offenses and, since April 4, 2004, those who have been arrested but not charged.

US law enforcement agencies use databases of DNA profiles, created by the states and linked through the FBI’s Combined DNA Index System (CODIS). These profiles contain the analysis of 13 segments of non-coding DNA, i.e., DNA that does not contain information about predispositions or other characteristics, but varies from individual to individual. The CODIS system, authorized by Congress in 1994, allows law enforcement officials to exchange and compare DNA profiles at the local, state and national levels. As of April 2004, over 1.8 million profiles were accessible through CODIS. The samples on which DNA profiles are based, usually blood or saliva, are kept at forensic laboratories around the country. Samples are generally maintained for a long time in order to permit re-testing if DNA profile evidence is challenged or as technology improves.

States in the US have different legislative requirements for inclusion in DNA databanks. All 50 states require sex offenders to provide DNA samples. In addition, some states require DNA samples from some or all felons, and many states include juveniles in their databanks. Samples of convicted offenders, whose profiles are submitted to the CODIS database, are retained indefinitely. State laws vary about the length of time other samples are retained. In at least one case, an individual who had not been convicted is suing the state to demand the return of his DNA sample. Federal and state law enforcement authorities have urged their legislatures to expand the scope of DNA databases.

Judges in the United States have issued warrants based solely on DNA identification. Indictments and convictions on the basis of DNA evidence alone have also occurred. In August 2003, New York City announced that under the John Doe Indictment Project prosecutors will attempt to link sex crimes to specific DNA profiles and then indict individuals with those DNA profiles before the individuals are identified and named. This is done in order to bring indictment before the statute of limitations expires.

DNA identification is also used to exonerate previously convicted individuals. As of September 2003, more than 130 people have been cleared of crimes through the use of DNA testing. In many cases those who were cleared had served many years in prison and some have spent years on death row. One of the best-known efforts to exonerate individuals through DNA testing is the Innocence Project at the Cardozo School of Law, Yeshiva University. Founded in 1992 by Professor Barry Scheck, the clinical law program provides legal assistance to persons challenging their convictions based on DNA evidence. Similar Innocence Project programs have also started at the University of Wisconsin Law School, the University of Washington School of Law and the Santa Clara University of Law. Several states have passed laws that regulate post-conviction DNA testing.

DNA can also be used to identify remains or biological traces (e.g., blood stains or hair) of missing persons. This is done by matching the DNA material found in the remains or trace with the DNA collected earlier from the presumed missing person or with the DNA of that person’s relatives. Some hospitals and police departments have started offering DNA kits to parents, instructing parents to collect DNA samples from their children, label the samples with the child’s name, Social Security Number and other personal information, and then store the samples in their home freezer. Police would request use of the sample if a child were missing.

Use of DNA in law-enforcement activities is a subject of debate in the United States and other countries. Civil rights, including privacy rights, are at the heart of the debate.

  • Security of DNA databanks: DNA databanks require appropriate safeguards for storage of physical samples, database security for DNA profile databases, and security mechanisms to protect the links between the two. This creates several potential points at which individual privacy can be violated and requires complex and multi-layered security arrangements, as well as appropriate audit and accountability measures. Members of Australian and Scottish law enforcement agencies objected to having DNA of police force members included in DNA databanks in part because they were concerned that security breaches could lead to compromise of police DNA profiles. (Police officers’ DNA would be included in forensic databanks in order to eliminate from the investigation biological evidence belonging to officers on the scene. Police officers’ fingerprints are routinely included in forensic fingerprint databases for the same reason.)
  • Re-use of DNA samples for research, education and planning: Forensic DNA databanks have in some cases been used for research and education. Some have suggested that since tissue samples, which are the source of DNA profiles, contain all the information about individuals’ predispositions to disease, they should be used for planning by correctional authorities. Such use of highly personal information without individual consent has been questioned because it is inconsistent with good information practices, which require that personal data be used for purposes for which it was collected or for which explicit informed consent has been obtained from each individual. While an argument can be made that those who have been convicted of a crime lose some of their civil rights, this cannot be said of those who were arrested but never convicted but whose DNA remained in forensic databanks. Although secondary purposes such as research might be accomplished with de-identified information, the Victorian Privacy Commissioner raised doubt that DNA information can ever be permanently de-identified, “given it is essentially comprised of identifiable material.” As a result, he proposed that the purposes for which forensic DNA databanks can be used should be clearly defined and subject for public discussion in order to permit appropriate balance between various public policy goals.
  • Storage of DNA of individuals who have never been involved in a crime: In some cases DNA has been collected from witnesses or others in order to eliminate them from police inquiries. DNA has also been collected from families of suspects in order to determine whether suspects should continue to be pursued. Since individuals may be reluctant to question the authority of police requesting a DNA sample, it is not clear that individuals can provide truly free informed consent to additional uses of their DNA even when they sign consent forms. If such DNA samples or profiles are included in forensic databanks, the databanks will include many people who have not been arrested or convicted of crimes, and the use of these people’s DNA by law enforcement officials and researchers could compromise individual privacy.
  • Due process in collection of DNA evidence: Most US jurisdictions do not require consent in order to obtain a DNA sample from someone convicted of a crime. In some countries, police are permitted to use necessary force to collect a sample when a convicted individual refuses to do so voluntarily. It is not clear how many jurisdictions restrict covert collection of DNA samples from suspects, e.g., from a drinking glass or a napkin. Associated Press reported in August 2003 that at least one judge in Iowa ruled that the police did not violate a man’s rights when they derived his DNA from a fork and water bottle he had used and left behind. On the other hand, the UK's Human Genetics Commission in and the Australian Law Reform Commission recommended that surreptitious collection of DNA be done only if permitted by a search warrant.

Military identification

Since the early 1990s, all personnel serving in the United States Armed Forces have been required to submit tissue samples to allow later DNA identification. The samples are stored at the Armed Forces Repository of Specimen Samples for the Identification of Remains. As of 2003, the United States military's DNA depository contains 3.8 million samples, including samples from active duty and reserve personnel. Civilian Department of Defense (DOD) employees and contractor personnel who accompany US forces on deployment may have their specimens included in the DOD DNA bank. DNA analysis of the specimens is not performed on demand. Retrieval and analysis is performed only when there is a requirement to identify human remains. Individuals have the right to request that their samples be destroyed when they conclude their relationship with the DOD (active duty, reserve duty and any other service).

The military’s DNA collection program has had its opponents. Two members of the United States Marine Corps were ordered to give DNA samples before being deployed to the Pacific in January 1995. They refused to do so and were charged with the violation of an order from a superior commissioned officer. The military court martial dismissed the charges, holding that the regulations underlying the DNA Repository program were not punitive and thus no disciplinary action could be taken for refusal to provide specimens. The two Marines sued the government in federal court, charging that the DNA collection program violates the Fourth Amendment protection against unreasonable searches and seizures. The district court found the DNA collection requirement to be valid. The court of appeals declared the case to be moot because by the time of the appeal the two Marines had been granted honorable discharges without ever having given samples of their DNA. Since that time two other members of the military have refused to give their DNA samples. One was sentenced by a court martial to 14 days hard labor and a two-grade reduction in rank. Another temporarily lost his rank and 40 percent of his pay, and was reassigned. He was later able to claim a narrow exception on religious grounds and was reinstated.

Paternity testing, fidelity confirmation and other uses of DNA identification

In the past few years there has been an emergence of DNA testing services and repositories created and controlled by the private sector. Companies are promising a variety of services, including individually tailored cosmetics, paternity testing, spousal fidelity confirmation, and genetic ancestry tracing. Some companies store samples for people in high-risk occupations, such as policemen and firemen, so that a loved one may have them identified after death, if needed.

Companies that collect and store genetic information promise confidentiality to their depositors. However, companies’ ability to change their privacy policies at any time raise significant concerns that genetic data can be misused, sold or stolen. Many of these companies use academic laboratories for genetic testing and abide by the same confidentiality standards that are mandated for those laboratories, but the companies themselves are not subject to oversight.

Because of the ubiquity of tissue samples from which genetic samples have been derived, there has been significant concern that samples can be taken and tested without individual knowledge or consent. Newspapers have published accounts of attempts by “genetic trophy hunters” to obtain tissue samples of famous people, such as Prince Harry of Britain. There have also been reports of surreptitious DNA testing in cases of disputed parentage or custody.

Using DNA for identification in uncontrolled circumstances raises complex issues and trade-offs that have not been examined and actively debated in the United States.

  • Non-consensual testing: Since DNA profiles can be derived from cells all individuals leave behind in the process of living, it is possible to have genetic testing conducted without the knowledge or consent of the individual to whom the sample belongs. Many private genetic testing laboratories in the US do not question the source of the samples or request consent from individuals whose samples are submitted.
  • Compromised family relationships: Many states consider a child to be a legitimate child of a marriage unless husband and wife were separated for a prolonged period during the time of the child’s conception. DNA testing that shows the child to be a product of an adulterous relationship can compromise the family and emotinally traumatize individuals involved.
  • Privacy of sperm or egg donation; privacy of giving up a child for adoption: Many individuals donate sperm or eggs on the assumption that they will not be traced. Similarly, some young women give up their children for adoption on the assumption that they will have no future contact with the children. If DNA tests can link the donor to the child, the donor’s privacy is compromised in spite of his or her wishes to remain uninvolved in the child’s life. There are no easy trade-offs between the right of the child to know its biological parents and, possibly, the medical history of those parents, and the right of adults to give up a child or donate cells without having to be connected to the child in later life.
  • Re-use of samples for other purposes: Companies have different policies with regard to preservation of specimens on which DNA testing had been conducted and of the resulting DNA profiles. Some companies destroy the specimens and the data when testing is completed and results reported to the requestor. Other companies preserve specimens and DNA profiles unless they are specifically asked to destroy or return them. When samples and DNA profile information are preserved, it is possible that they may be used for purposes such as research for which no consent had been given at the outset. It is also possible that companies will use the data to recruit individuals to participate in various research projects if they are known to possess characteristics of interest to the researchers.

Use of DNA for detection and treatment of disease

Genetics holds out the promise for more personalized medicine. This promise is expressed in two ways. First, there is hope that links between genes and disease will allow physicians to assess the risk of illness more accurately and to provide better preventive and treatment alternatives. Second, understanding links between genes and medication response may result in more accurate prescribing, particularly in cases where more than one drug exists for the treatment of a condition. Pharmacogenetics, or the study of links between a genetic profile and reactions to specific medications, is an important field of genetic research.

Links between genes and disease are not simple. Both genetic and environmental factors play a role in the development of disease. Some diseases are a result of a variation in a single gene. Single-gene disorders include cystic fibrosis, sickle cell anemia, Huntington’s disease, and hereditary hemochromatosis. Multifactorial or complex disorders are a result of a combination of mutations in two or more genes and environmental factors such as diet, lifestyle or exposure to specific chemicals or other environmental factors. These multifactorial disorders include heart disease, high blood pressure, Alzheimer’s disease, arthritis, diabetes, cancer, and obesity. Some genetic disorders, such as Down syndrome, are caused by abnormalities in gene-carrying cell structures such as chromosomes or mitochondria. Some genetic mutations are not present at conception but acquired later in life. According to the Human Genome Project Web site on genetic testing, over 900 genetic tests are currently available to determine whether an individual has one of the genes linked to a single-gene disorder and the number of tests is rapidly growing.

For multifactorial disorders, the links between genes and disease are not well understood. Generally, it appears that genetic information may provide some indication of vulnerability, but it is not possible to say whether or not a specific individual will develop the disease, when disease might develop, or how severe it will become. For example, the Washington Post reported that in 2003 researchers identified a gene responsible for the development of depression after exposure to stress. People with a variation in that gene are more than twice as likely as people with the normal version of the gene to react to a traumatic event by becoming depressed. Nevertheless, 57 percent of people with the mutated gene never became depressed and 17 percent of people without the mutation developed depression in response to similar crises.

Some genetic mutations that are associated with disorders are also associated with increased chances of survival in some environmental contexts. For example, sickle cell anemia is caused by a mutation in the hemoglobin gene, and is common among individuals from Africa and the Mediterranean area. However, being a carrier for sickle cell anemia gives the individual protection against malaria because carriers have abnormal red blood cells that die soon after being infected with the malaria parasite. Thus, the mutation gives a survival advantage to individuals who live in areas where malaria is endemic.

At present, genetic testing for disease predisposition is only minimally regulated in the United States. Under the Clinical Laboratories Improvement Act, clinical diagnosis may be made only on the basis of a test result from a laboratory that has been certified to conduct a particular genetic test. However, laboratories are permitted to perform genetic tests without certification. A few states have established regulatory guidelines for genetic testing.

In addition to genetic tests available through health care professionals, there has been significant growth of genetic testing kits marketed directly to consumers. Some see the availability of home testing kits as a positive development, allowing individuals to perform genetic tests privately and to make a choice about whether to disclose results to anyone. However, there are questions about the scientific validity of some tests on the market. There are also concerns that in-home tests do not provide genetic counseling for the interpretation of results, as is usually the case with tests offered through the medical community. Without help, individuals may not properly interpret genetic test results or understand their treatment and prevention options because even highly educated individuals are not always skilled at understanding opportunities and risks presented in terms of likelihoods or probabilities.

Growing research on identifying genes related to specific diseases poses several privacy and civil rights issues.

  • The right not to know: While genetic testing for predisposition to diseases has been advancing, treatment has often lagged behind. In some cases it is possible to determine a genetic predisposition, but no treatments or only radical preventive measures are available. Thus, some individuals are deciding that they do not wish to find out that they are genetically predisposed to a condition. In practice, this “right not to know” may be difficult to maintain. Some diseases, like breast cancer, are known to run in families, so women may suspect their predisposition without formal genetic testing. In other cases, one family member may decide to test himself and reveal the result to the family, disclosing other family members’ predisposition by implication. It is not always possible to resolve the conflict between one individual’s right to know and another individual’s right not to know about a genetic predisposition.
  • Discrimination in health insurance: The lack of clear connection between genetic make-up and disease has raised concerns about discrimination in health insurance in the United States. Health insurers claim that good business practices require them to charge higher rates or limit available insurance to people at higher risk of developing diseases, and that all known risk factors should be considered in the risk rating. In some cases, health insurers have treated genetic predisposition as a pre-existing condition and have denied or limited coverage on that basis. Opponents of such discrimination cite the tenuous connection between genetic predisposition and development of disease, the fact that many diseases can be treated, controlled or prevented through lifestyle changes and medical interventions, and the fact that health insurance is supposed to provide ill people with the means to pay for medical care. Some states have passed anti-discrimination laws applicable to health insurance. This type of discrimination is not an issue in countries that have national health care systems with universal coverage.
  • Discrimination in life insurance: Life insurance applications generally require individuals to disclose information about themselves, their health and their lifestyles as a condition of obtaining coverage. Some life insurers have asked individuals to take genetic tests in order to determine whether they are predisposed to diseases that could make them greater risks. Genetic testing for life insurance was a subject of a Parliamentary hearing in the UK. Because of the uncertain connection between genetic predisposition and the eventual development of disease in any specific individual, life insurers agreed to a voluntary five-year moratorium on genetic testing with the exception of the test for Huntington’s Disease on policies that would pay out more than 500,000 Pounds.
  • Discrimination in employment: The growth of genetic testing to determine predisposition to disease has given rise to concerns about discrimination in employment. Employers have strong economic incentives to hire and retain workers who are likely to remain healthy in the belief that such workers would exhibit less absenteeism. In the United States, where employers contribute a significant portion of the cost for employees’ health and life insurance, healthier employees are also favored because they incur lower health care and life insurance costs. In addition to testing for general predisposition toward disease, some employers have tested potential employees for genetic characteristics that would increase employees’ risk if they are exposed to certain environmental conditions during work. Employers have also claimed that if individuals with certain genetic predispositions are hired into positions that involve public safety, they may pose a threat to the public, and some courts have accepted that this may be a valid reason for limiting someone’s employment opportunities. The ability of employers to discriminate on the basis of genetic information has been held to be inappropriate in the US because the current state of knowledge does not allow a significantly strong link between genetic make-up and ability to perform a job or potential for developing illness. Some states have passed laws that prohibit employment discrimination on the basis of genetic information. President Clinton signed an executive order prohibiting genetics-related employment discrimination in the federal workforce.
  • Involuntary disclosure of a condition: Increasing marketing of take-home DNA kits raises the risk that some people may be tested without their knowledge or consent. Discarded objects that contain DNA may be used by other members of the household or by outsiders for testing, violating an individual’s privacy even if done with the best intentions.

Pre-implantation testing and testing of newborns

Genetic testing can take place at almost any stage of human development. Couples that have babies through in vitro fertilization (IVF) can test embryos before they are implanted in a woman’s uterus. Babies can be tested in the womb by withdrawing small samples of their tissues. For many years newborns have been routinely tested for some diseases, although testing until recently has generally not involved DNA analysis.

Pre-implantation testing of embryos has grown with the increasing use of IVF technology. The DNA of an eight-cell human embryo can be examined for genetic traits and abnormalities, allowing prospective parents to determine which embryos they wish to implant. Physicians involved with IVF see this as a positive development, permitting an increasing number of healthy births. They generally focus on the ability of people who carry a gene for a known disorder to choose an embryo that is free of that disorder. Some opponents of abortion even see pre-implantation testing as a way to make “choice” about a pregnancy before the pregnancy begins. However, the ability to “customize” babies causes concerns among ethicists, as they envision a future in which embryos are selected not only to minimize potential illness but to enhance competitive advantage and social status through traits such as height, eye color, musical talent, athletic ability or intelligence. Austria, Germany, Ireland and Switzerland have outlawed pre-implantation genetic testing on ethical grounds. France, Belgium, the Netherlands and United Kingdom have placed restrictions on the use of pre-implantation genetic testing.

Newborns of industrialized countries have been screened for many years to determine whether they have inborn errors of metabolism and some other genetic conditions. The newborn screening cards, generally known as Guthrie cards, contain blood samples and represent a large collection of specimens from which DNA can be derived. In addition, they contain personal information such as the mother’s name and address, hospital of birth, baby’s medical records number, and the name and address of the baby’s doctor. Different laboratories store Guthrie cards under different conditions and for different lengths of time. There is no general agreement about how long the cards should be kept. Some laboratories discard their cards after several weeks or months, when the cards are no longer necessary for quality control and similar purposes. Others keep Guthrie cards for years, enabling them to use the cards to help in investigation of babies’ deaths. In the UK, the Human Genetics Commission is working on a report that considers creating and storing genetic profiles of all newborns for future use in individualized medical treatment.

Although some laboratories have been keeping the cards for longer periods, others have discarded cards because of concern that the cards might be misused. There has been at least one case in which law enforcement officials have attempted to gain access to Guthrie cards as a source of DNA. When Guthrie cards were requested from a laboratory in Australia, laboratory officials destroyed the cards rather than provide access because such use of baby DNA was clearly not envisioned by the parents when they agreed to testing. There has been concern in the medical community that unless Guthrie cards are protected from re-use, parents will be reluctant to have their babies tested.

Genetic testing of embryos and newborns raises privacy issues.

  • The right to privacy in family relationships: Scholars have recognized that privacy includes the right to maintain certain relationships confidential. If newborn screening were to include DNA testing and if test results are not kept confidential, others outside the family could learn about the genetic predispositions of the parents as well as the children.
  • Re-use of samples for unauthorized purposes: When parents agree to have a fetus or a newborn tested for disease, they do not think about the possible use of the DNA in the sample for research or law enforcement purposes. Use of DNA for other than original purpose may violate individual privacy unless it is consistent with good information practices, including informed consent.

DNA and behavior

One of the more controversial areas of genetics research is the linking of genes and behavior. Researchers have made claims that genes influence such traits as alcoholism, homosexuality, thrill seeking, nurturing, and tendencies towards violent criminal behavior. These claims are based on indications that some behaviors are species-specific, can persist from generation to generation, and can change as a result of brain injury or other biological alteration. However, most human behaviors are complex and result from a life-long interaction between the genes and the environment. Certain genes are expressed only after an environmental trigger turns them “on.” An individual’s environment can also determine the extent to which behavioral predispositions are expressed. A recent review of genetic research by the Nuffield Council on Bioethics in the UK found that very little is known about the links between genes and human behavior.

Behavioral genetics involves several scientific difficulties. First, it is often difficult to define some behavioral traits. Intelligence is an excellent example of this, with many controversies that have arisen over the years. Second, even if a trait can be defined, it is not clear how to measure it or what constitutes the expression of the trait. For example, do people who like to ride roller-coasters engage in the same type or extent of thrill-seeking behavior as people who jump out of airplanes, and how can “thrill-seeking” be measured? Third, behavioral traits are often culturally defined. An individual who might be considered lazy in a culture that places primary value on work productivity may be considered a workaholic in a culture that values leisure and non-work-related pursuits. Finally, it is extremely difficult to determine the precise extent to which various genetic and environmental factors determine behavior.

Attempts to link genetics and behavior raise privacy and civil rights issues.

  • Different treatment of individuals on the basis of genetic predisposition: If genetic links are presumed between specific genes and behavior, individuals who possess these genes may be singled out for different treatment even if they do not exhibit the behavior. For example, it is possible that someone who is found to have a predisposition to violence might receive a harsher criminal sentence for a non-violent offence because of a presumption that he poses a danger to society due to his genetic make-up.
  • Discrimination in employment: Employers have claimed that they should be able to exercise some control or influence over employee behavior outside work. For example, many employers perform drug tests on employees and reserve the right to fire those who use drugs outside work hours, whether or not the amount of drugs present in the employee’s system during working hours may not be sufficient to influence on-the-job behavior. Genetic links to behaviors that employers might consider costly or undesirable can lead to discrimination against individuals who possess specific genes, whether or not these genes affect the employees’ ability to behave appropriately on or off the job.

Use of DNA for research

Finding connections between genes, lifestyle and disease requires databases that link the physical tissue sample (e.g., blood or saliva) with the DNA analysis of the sample and the medical and personal history of the individual. The links have to be maintained over time, particularly in cases where researchers are looking to track disease development. The need to maintain links between individual identity and highly personal, sensitive information in an easily searchable database creates privacy concerns. These concerns are amplified by the fact that it is not possible at present to envision all the research projects for which the collected genetic information will be useful, so the usual process of obtaining informed consent from participants may not always be meaningful.

Genetic research databases raise the following privacy concerns:

  • Ability to assign individual characteristics through group membership: Whether or not individuals choose to participate in genetic research, they may be affected by the results of such research. For example, if research identifies an association between an illness and a particular ethnic group, all individuals within that group may be presumed to be affected, whether or not each of them had been tested. An individual’s privacy will, in effect, be violated simply through the existence of the link between the individual and the group.
  • Lack of fully informed consent: Genetic science is now in its infancy. It is impossible to predict what projects will be done with the genetic data collected for research. Individuals may feel that they are unable to give fully informed consent because they may not wish to have their genetic material used for research projects which they find unacceptable.
  • Benefiting from results of research: One of the inducements for participation in genetic research is the promise that the individual will benefit from therapeutics derived from the research. For example, Estonian physicians and consumers have cited the ability to get their own genetic profile and to take advantage of useful discoveries as an important reason for participation in the Estonian population database. This means that researchers must find a way of communicating research results to individuals who might benefit from them or to doctors who treat them. In some cases this may compromise an individual’s desire not to know about a particular genetic predisposition.

International genetic databases

Because links between genes and diseases or genes and behavior are statistical in nature, it is only possible to determine such links in a scientifically valid manner when a large number (potentially thousands) of people who exhibit a disease or a behavior are compared to a large number of “controls” who do not exhibit the trait. Statistical validity of the findings is further improved when unrelated variation is minimized by making comparisons on people who have common ancestry. This means that large national genetic databases are a highly desirable resource for genetic research. Several countries are developing such large databases, often in ways that seek to share risks and rewards with private sector companies.

Iceland

In 1998, the government of Iceland passed the Act on Health Sector Database (HSD), which authorized the creation of a database that includes genetic information about the country’s entire population of 285,000 people. Because the population of Iceland has been relatively stable and isolated for over a thousand years, the database will be used to combine genetic, disease and genealogical data to identify genes linked to specific diseases, the proteins encoded by these genes, and drugs that can be used to treat the diseases.

The database, managed by a private company deCODE Genetics, includes genetic and medical information collected as part of Iceland’s national health system. The government of Iceland has the right to use the database for planning and policy purposes, but deCODE Genetics has an exclusive commercial license that gives it control over the database for 12 years. In exchange for commercial exclusivity, deCODE Genetics is obligated to provide the people of Iceland with free drugs and therapies that are developed as a result of research on the Icelandic population database.

At the start of the project, consent for the participation in the database was assumed to be implicit. The database was created from the available records and the project was initiated. After various groups, including the Iceland Medical Association, raised concerns about compulsory participation and possibly inadequate privacy safeguards, individuals were given the right to have their data excluded from the database by notifying their physicians. It has been reported that by June 2003 more than 20,000 Icelanders (more than 10 percent of the adult population) had opted out of the research plan. The Association of Icelanders for Ethics in Science and Medicine (Mannvernd) was formed to oppose HSD. The first lawsuit to test the validity of the Act was filed in 2001, with hearings still taking place in the beginning of 2003. As of the summer of 2003, deCODE Genetics is still redesigning database structures to improve privacy protection. At the same time, the company is publishing well-regarded research conducted on a separate database in which 80,000 Icelanders have chosen to participate.

Estonia

The former Soviet state of Estonia is developing a population-wide genetic database. The database is expected to include samples from about one million of Estonia’s 1.4 million people. The database is being developed by the Estonian Genome Project Foundation, created by the government of Estonia within the jurisdiction of the Ministry of Social Affairs. The Foundation owns the database and is responsible for privacy protection of the participants. Research and commercialization of results will be carried out by Egeen International, a commercial company located in California and given the exclusive commercial license to the database. Egeen raised its first round of private financing in November 2002. Profits derived from the commercialization of results are to be shared between investors and the Estonian Genome Project Foundation. The main focus of the Estonian database is pharmaceutical research, starting with research that correlates genetic make-up, lifestyle and environmental factors with response to particular anti-depressant medications.

Unlike the Icelandic database, participation in the Estonian database has been voluntary from the start and based on explicit consent of the individual. Individuals have a right to access their data, can give permission to their physicians to obtain their information, and can request to be notified of any relevant tests or treatments developed from the database. Although there is no organized opposition to the project, concerns have been raised because physicians are being paid about five times their normal hourly rate to recruit patients for participation. This might provide inducement to physicians to present participation in a more favorable light than they would if they were not given heavy incentives.

United Kingdom

The United Kingdom is working on assembling a large genetic research database. UK Biobank, a joint venture of the Medical Research Council, the Wellcome Trust and the Department of Health. UK Biobank plans to collect 500,000 samples from men and women, aged 45 to 69. Genetic information will be combined with environmental and lifestyle information in order to study interaction between genetic, environmental and lifestyle factors in disorders such as cancer, heart disease, diabetes and Alzheimer’s disease. UK Biobank plans to start recruiting participants in 2004.

The UK Biobank project has been controversial not only because its high cost is perceived as detracting from other worthwhile projects, but also because of privacy concerns as biotechnology and pharmaceutical companies access the data to create new diagnostics and therapies. UK Biobank’s founders responded to various criticisms by setting up an independent oversight body to monitor how data and results will be used. They have provided assurances that participating companies, insurers and employers will not be able to get individually identifiable information, and that police will be given information only if required by court order.

Sweden

A large-scale Swedish biobank is managed by UmanGenomics, which was created in 1999 in order to commercialize the large population based Medical Biobank in Umee. Originally established by a group of scientists, the Biobank contains detailed medical information for the relatively homogenous population of Vesterbotten in Sweden. The Biobank contains DNA, plasma samples, and biochemical and lifestyle data from more than 66,000 individuals and is linked to high quality disease registries. It is regulated under the Swedish Act on Biobanks, which came into force on January 1, 2003.

Other

Several other national databases and large research projects are being carried out.

Canada: Genome Quebec is a not-for-profit organization that is promoting genetic research on Quebec?s population. The funding is provided by the Canadian federal government, the Quebec Ministry of Research, Science and Technology and the private sector.

United States: Several large research projects are under way, including a project at Howard University that will use samples from 25,000 individuals to look for genetic factors in diseases that are disproportionately prevalent in people of African descent.

Resources

General
  • Human Genome Project Web site contains information on a variety of genetics issues, including ethics, law and social implications.
  • Nature Genome Gateway provides information and links on various subjects related to genetics.
  • Genetics and Public Policy Center, funded by the Pew Charitable Trusts and part of the Phoebe R. Berman Bioethics Institute at Johns Hopkins University, provides analysis of policy issues related to genetics.
  • Genetic Alliance is an international coalition of individuals and organizations interested in improving lives and healthcare for people with genetic conditions.

Law and policy

  • The Violent Crime Control and Law Enforcement Act of 1994, P.L. 103-322, 28 CFR 28, authorized the creation of the Combined DNA Index System (CODIS), created a national oversight committee to develop guidelines for DNA forensics, and created a $40 million five-year grant program to help state and local crime laboratories in developing and improving DNA testing capabilities.
  • National Conference of State Legislatures Genetic Technologies Project tracks state laws and developments related to the use of genetic information in law enforcement, employment and insurance.
  • On February 8, 2000, U.S. President Clinton signed an executive order prohibiting federal departments and agencies from using genetic information in any hiring or promotion action.
  • World Medical Association published Declaration on Ethical Considerations Regarding Health Databases. This Declaration applies to all databases of health information, including databases of genetic information.

Cases

  • Jones v. Murray, 962 F.2d 302 (4th Cir. 1992) established that involuntary extraction of blood from inmates for forensic DNA databanks does not violate the Fourth Amendment prohibition against unreasonable searches and seizures.
  • Mayfield v. Dalton, 901 F.Supp. 300 (D.Haw 1995), vacated as moot, 109 F.3d 1423 (9th Cir. 1997), established that mandatory collection of DNA from military service members did not violate the Fourth Amendment protection against unreasonable searches and seizures.
  • Norman-Bloodsaw v. Lawrence Berkeley Laboratory, 135 F.3d 1260, 1269-70 (9th Cir. 1996) established that employees could not be tested for medical conditions such as sexually transmitted diseases or pregnancy without their knowledge and consent. Lawrence Berkeley Laboratory had been testing the blood and urine samples of employees for syphilis, pregnancy, and the genetic trait for sickle cell disease as part of a comprehensive medical exam.
  • The US Equal Employment Opportunity Commission (EEOC) filed its first law suit to stop genetic testing under the Americans with Disabilities Act in February 2001. The suit was filed on behalf of employees at the Burlington Northern Santa Fe Railroad. Burlington Northern had collected blood samples from employees who filed workers’ compensation claims for carpal tunnel syndrome and was performing genetic tests to look for a mutation in the PMP 22 gene. This mutation is associated with a rare condition called Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) which, in some cases, is associated with carpal tunnel syndrome. The company wanted to use genetic tests to invalidate workers’ claims that the carpal tunnel syndrome they experienced was related to repetitive motions with heavy machinery and to show instead that the injuries were a result of genetic predisposition. The company proceeded with the tests in spite of the fact that incidence of carpal tunnel syndrome at Burlington Northern was much higher than the prevalence of HNPP in the general population and in spite of the lack of scientific consensus that links the PMP 22 mutation to carpal tunnel syndrome. The suit was settled out of court in May 2002. The Burlington Northern Santa Fe Railroad agreed to stop all genetic testing and to pay $2.2 million in damages.
  • Moore v. Regents of University of California, 793 P.2d 479 (Cal. 1989), cert. denied, 499 U.S. 936 (1991) established that an individual had no proprietary rights in the cell lines of his body. The ruling by the California Supreme Court also established that the physician breached his disclosure obligation by not disclosing to Moore that he and the University had a major financial interest in continuing testing of Moore’s cells and their development for commercial purposes.

Documents