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Abstract

Where is the energy spent inside my app? Despite the im-
mense popularity of smartphones and the fact that energy
is the most crucial aspect in smartphone programming, the
answer to the above question remains elusive. This paper
first presents eprof, the first fine-grained energy profiler for
smartphone apps. Compared to profiling the runtime of ap-
plications running on conventional computers, profiling en-
ergy consumption of applications running on smartphones
faces a unique challenge, asynchronous power behavior,
where the effect on a component’s power state due to a pro-
gram entity lasts beyond the end of that program entity. We
present the design, implementation and evaluation of eprof
on two mobile OSes, Android and Windows Mobile.

We then present an in-depth case study, the first of its
kind, of six popular smartphones apps (including Angry-
Birds, Facebook and Browser). Eprof sheds lights on inter-
nal energy dissipation of these apps and exposes surprising
findings like 65%-75% of energy in free apps is spent in
third-party advertisement modules. Eprof also reveals sev-
eral “wakelock bugs”, a family of “energy bugs” in smart-
phone apps, and effectively pinpoints their location in the
source code. The case study highlights the fact that most of
the energy in smartphone apps is spent in I/O, and I/O events
are clustered, often due to a few routines. This motivates us
to propose bundles, a new accounting presentation of app I/O
energy, which helps the developer to quickly understand and
optimize the energy drain of her app. Using the bundle pre-
sentation, we reduced the energy consumption of four apps
by 20% to 65%.

Categories and Subject Descriptors D.4.8 [Operating
Systems]: Performance–Modeling and Prediction.
General Terms Design, Experimentation, Measurement.
Keywords Smartphones, Mobile, Energy, Eprof.
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1. Introduction

Smartphones run complete OSes which provide full-fledged
“app” development platforms, and coupled with “exotic”
components such as Camera and GPS, have unleashed the
imagination of app developers. According to a new re-
port [1], the app market will explode exponentially to a $38
billion industry by 2015, riding the huge growth in popular-
ity of smartphones. Despite the incredible market penetra-
tion of smartphones and exponential growth of the app mar-
ket, their utility has been and will remain severely limited
by the battery life. As such, optimizing the energy consump-
tion of millions of smartphone apps is of critical importance.
However, the quarter million apps [2] developed so far were
largely developed in an energy oblivious manner. The key
enabler for energy-aware smartphone app development is an
energy profiler, that can answer the fundamental question of
where is the energy spent inside an app? Such a tool can be
used by an app developer to profile and consequently opti-
mize the energy consumption of smartphone apps, much like
how performance profiling enabled by gprof [3] has facili-
tated performance optimization in the past several decades.

Designing an energy profiler for modern smartphones
faces three challenges. First, it needs to track the activities
of program entities at the granularity that a developer is in-
terested in. For example, some developers may be interested
in energy drain at the level of threads, while others may de-
sire to understand the energy breakdown of an app at the
granularity of routines, which are the natural building blocks
following the modular programming design principle.

Second, energy accounting requires tracking of power
draw activities of various smartphone hardware components.
Third, the power draw and consequently energy consump-
tion activities need to be mapped to the program entities
responsible for them. Performing the above two tasks for
smartphones faces several major challenges. First, modern
smartphones do not come with built-in power meters. Sec-
ond, and more importantly, smartphone components exhibit
asynchronous power behavior, i.e., the instantaneous power
draw of a component may not be related to the current
utilization of that component. Such asynchronous behavior
include: (a) Tail power state: Several components (GPS,
WiFi, SDCard, 3G) have tail power states [4, 5]; (b) Per-



sistent power state wakelocks: Smartphone OSes employ
aggressive CPU/Screen sleeping policies and export wake-
lock APIs for use by apps to prevent them from sleeping.
In a typical usage, the power drain due to a wakelock per-
sists beyond a program entity (e.g., a routine); (c) Exotic
components: Newer components like camera and GPS start
consuming high power once switched on in one entity, and
often continue till switched off by some other entity [4, 6].
Such asynchronous power behavior pose challenges to cor-
rectly attributing the energy consumption of the whole phone
to individual program entities.

In this paper, we study the problem of energy profiling
and accounting of smartphone apps and make three concrete
contributions towards enabling energy-aware app develop-
ment on smartphones. First, we present the design of eprof,
the first (to the best of our knowledge) fine-grained energy
profiler for modern smartphones, and its implementation on
two popular mobile OSes, Android and Windows Mobile.
Our design leverages a recently proposed fine-grained online
power modeling technique [4], which accurately captures
complicated power behavior of modern smartphone compo-
nents in a system-call-driven Finite State Machine (FSM).
Eprof design focuses on energy accounting policies: how to
map the power draw and energy consumption back to pro-
gram entities. We explore alternate accounting policies and
adopt in eprof the last-trigger policy which attributes lin-
gering energy drain (e.g., tail) to the last trigger, as it more
intuitively reflects asynchronous power behavior in mapping
energy activities to the responsible program entities.

Second, we report on our experience with using eprof to
analyze, for the first time, the energy consumption of six of
the top 10most popular apps fromAndroidMarket including
AngryBirds, Android Browser, and Facebook.Eprof exposes
many surprising findings about these popular apps: (a) third-
party advertisement modules in free apps could consume
65-75% of the total app energy (e.g., AngryBirds, popular
chess app); (b) clean termination of long lived TCP sockets
could consume 10-50% of the total energy (e.g., browser
doing google search, CNN surfing, AngryBirds, NYTimes
app, mapquest app), (c) tracking user data (e.g., location,
phone stats) consumes 20-30% of the total energy (e.g.,
NYTimes). In a nut shell, eprof shows that, in most popular
free apps, performing the task related to the purpose of the
app (e.g., chess algorithms in chess apps) consumes only a
small fraction (10-30%) of the total app energy.

Our experience with profiling these popular apps using
eprof revealed several key observations. (1) Our experi-
ence confirms with ample evidence that smartphone apps
spend a major portion of energy in I/O components such as
3G, WiFi, and GPS. This suggests that compared to desk-
top apps, optimizing the energy consumption of smartphone
apps should have a new focus: the I/O energy. This is espe-
cially true since CPU energy optimization techniques have
been well studied and mature techniques like frequency scal-
ing have already been incorporated in smartphones. (2) The
asynchronous power behavior of smartphone I/O compo-

nents is indeed triggered often in smartphone apps, in fact in
all 21 apps we tested, including popular ones such as Angry-
birds and the Android browser. (3) Over the duration of an
app execution, there are typically a few, long periods of time
when I/O components continuously stay in some high power
state, which we term as I/O energy bundles. (4) Further, the
I/O energy of an app is often due to just a few routines that
are called by different callers in the app source code, most
intuitively a consequence of modular programming practice
for I/O operations. This is in stark contrast with CPU time
profiling (e.g., using gprof) where all routines in the app
consume some CPU time. Together observations (3) and (4)
suggest that there are often only a few routines that are re-
sponsible for I/O bundles.

The above observations suggest that a flat per-entity en-
ergy split presentation (similar to time split reported by
gprof) does not immediately help the programmer to curtail
the app energy. A presentation that is more informative and
constructive, which aims to reduce I/O energy consumption,
is to identify each I/O energy bundle and present its I/O en-
ergy profile. In the third part of the paper, we develop such an
energy accounting presentation which captures the routines
and their causal execution order within each energy bundle.
We show how such a bundle-oriented presentation facilitates
quick understanding of the energy consumption of an app
beyond individual routines and exposes ways of program
restructuring to optimize the app’s energy consumption. Us-
ing the bundle accounting information, we restructured a
few apps running on the two OSes, reducing their energy
consumption by 20-65%.

2. Accounting Granularity

Energy accounting for smartphone apps answers the essen-
tial question for energy optimization and debugging: where
is the energy spent inside an app? In answering this ques-
tion, we need to (1) break an app into energy accounting
entities, (2) track the power draw and energy activities of
each hardware component, and (3) map the energy activities
to the entities responsible for them. We discuss the first task
of how to track entities in this section.
Granularity of Energy Accounting. The granularity of ac-
counting entities depends on the level at which a developer
desires to isolate the energy bottleneck and optimize en-
ergy drain, e.g., by restructuring the source code. An entity
could be one of the four conventional, well-understood pro-
gram entities, a process, a thread, a subroutine, and a system
call. In principle, an entity can be made more elaborate by
the programmer, e.g., a collection of above program entities
(e.g., all routines doing networking). In this paper, we focus
on the four conventional program entities and leave account-
ing for more general entity definitions as future work.

Energy accounting at the system call or routine granular-
ity directly exposes the root causes for energy consumption
to the developer. Splitting energy among various threads of
a process is also important as modern smartphone apps often
consist of a collection of code written by third-party service



providers (e.g., AngryBirds runs the third-party Flurry [7]
program as a separate thread for data aggregation and ad-
vertisement.) Finally, per-process accounting is relevant as
all new smartphone OSes support multitasking and concur-
rently running apps affect each other’s energy consumption.

Tracking Program Entities. Since system calls are what
trigger I/O components into different power states, the key
to tracking all four program entities for energy accounting
is to log I/O system calls (which is already done by the on-
line power modeling scheme [4]) and their call stacks which
allow us to map a system call to the calling routine, thread,
and process during postprocessing. To enable accounting for
CPU energy drain at the routine level, we use instrumen-
tation to either log the exact routine boundaries or sample
the stack periodically to estimate CPU utilization per rou-
tine [3]. Finally, we need to log the process and thread ids
at each CPU context switch to enable CPU accounting per
thread and per process.

3. Asynchronous Power Behavior

Modern smartphones come with a wide variety of I/O hard-
ware components embedded in them. Typical components
include CPU, memory, Secure Digital card (sdcard for
short), WiFi NIC, cellular (3G), bluetooth, GPS, camera
(may be multiple), accelerometer, digital compass, LCD,
touch sensors, microphone, and speakers. It is common for
apps to utilize several components simultaneously to offer
richer user experience. Unlike in desktops and servers, in
smartphones, the power consumed by each I/O component
is often comparable to or higher than that by the CPU.

Each component can be in several operating modes,
known as power states for that component, each draining
a different amount of power. Each component has its own
base state which is the power state where that particular
component consumes zero power (irrespective of other com-
ponents). A component can have one or more levels of pro-
ductive power states (e.g., low and high for WiFi NIC), and
the tail power state, which typically consumes less power
than a productive power state, e.g.,WiFi, sdcard, 3G radio.1

Finally, the idle power state corresponds to the system-wide
power state where the phone drains near zero power: the
CPU is shut off, the screen is off, and all other components
are turned down, except the network components which re-
spond to periodic beacons.

Modern smartphones exhibit asynchronous power behav-
ior where an entity’s impact on the power consumption of
the phonemay persist until long after the entity is completed.

Tail energy. Several components, e.g., disk, WiFi, 3G, GPS,
in smartphones exhibit the tail power behavior [4–6], where
activities in one entity, e.g., a routine, can trigger a compo-
nent to enter a high power state and stay in that power state
long beyond the end of the routine. This is in stark contrast

1 Special cases such as CPU frequency scaling and wireless signal strength
are handled by altering the magnitude of the power consumed in the respec-
tive states as a function of these state parameter values.

with the execution time metric profiled by gprof which ends
promptly when the routine returns.

Wakelocks. Smartphone OSes apply aggressive sleeping
policies which make smartphones sleep after a brief period
of user inactivity, and export APIs which apps need to use to
ensure the components stay awake, irrespective of user ac-
tivities, so that apps can perform their intermittent activities
in the background (e.g., network sync). Figure 1 shows the
power state changes due to wakelocks [8] on Android on pas-

sion (Table 1 lists the mobile phones we use throughout the
paper). For example, when wakelock PARTIAL WAKE LOCK

exported by the PowerManager class in Android is acquired,
the CPU is turned on, consuming 25mA.2

Wakelocks thus present another example of asynchronous
power behavior of smartphones. A wakelock acquired by
a caller entity,3 e.g., a routine, triggers a component into
a high power state. The component continues to consume
power after the entity is completed and other entities start
using the component. The component is returned back to
the idle power state when the wakelock is released, possibly
by another entity. Correctly accounting energy due to wake-
locks is particularly important as it can help to track down
wakelock bugs [9] (e.g., Facebook bug [10], Android eMail
bug [11, 12], and Location Listener bug [13]).

Exotic components. Today’s smartphones contain several
exotic components, such as GPS, camera, accelerometer, and
sensors, which consume energy differently than traditional
components like CPU [4, 6]. Once these components are
switched on by an entity, they continue to drain power until
the moment they are switched off, often by another entity.

The above asynchronous power behavior pose challenges
to the second task of developing an energy accounting tool,
i.e., tracking energy activities of the components. We over-
come these challenges by leveraging a recently proposed
online power model for smartphones [4], which captures
the above intricate asynchronous power behavior of mod-
ern smartphones in a finite state machine (FSM). The FSM
consists of power states as the nodes and system calls as the
triggers for transitions among the power states. Using the
FSM power model, system calls issued during the app exe-
cution drive the FSM to different power states. For a produc-
tive power state, linear regression is used to correlate the du-
ration the component stays in that state with the parameters
(workload) of the system call that drove the FSM to the state,
and energy consumption at that state is deduced [4]. The du-
ration and hence the energy consumed at tail states and states
due to wakelock acquires and releases are straight-forward.

2 In this paper, for power measurement we directly report the current drawn
in milli-Amperes (mA). The actual power consumed would be the current
drawn multiplied by 3.7V, the voltage supply of the battery. Similarly, for
energy we directly report micro Ampere Hours (µAH); the actual energy
would be the µAH value multiplied by 3.7V. The smartphone batteries are
rated using these metrics and hence are easy to cross reference.
3 Usually wakelocks are held by framework entities in Android, which
control the inactivity timeouts, based on user level policies.



Fig. 1: Wakelock FSM
(passion /Android).

Fig. 2: Send happens right after connect. Fig. 3: Send happens 5 seconds after connect.

Table 1: Mobile handsets used throughout the paper.

Name HTC- MHz OS (kernel)

magic Magic 528 Android 2.0 (Linux 2.6.34)
tytn2 Tytn II 400 WM6.5 (CE5.2)
passion Passion 1024 Android 2.3 (Linux 2.6.38)

4. Accounting Policies on Smartphones

In this section, we first use an example to show how the
above asynchronous power behavior of smartphones poses
unique challenges to the third task of energy accounting, i.e.,
how to attribute energy activities to the responsible program
entities. We discuss alternate accounting policies and then
present the energy accounting policy used in eprof.

4.1 Accounting Policy Challenge: A Simple Example

The accounting policy complications due to the three asyn-
chronous power behavior share the same nature: how to at-
tribute an energy activity that persists beyond the triggering
program entity or entities. We focus on the tail energy be-
havior, to illustrate the complication and design choices.

Consider a simple app that connects (in routine net

connect()), and uploads data via five sends with 10KB
each (in routine netsend()), to a server over the 3G net-
work. Figure 2 plots the current draw of passion running
Android during the app execution. The app consumes a to-
tal of 314 µAH of energy. The moment the connect system
call is issued, the 3G radio ramps up [5, 14] power draw for
2.5 seconds before the TCP handshake is started. The ram-
pup consumes 61 µAH (19.5% of the entire app energy).
After the handshake which consumes 11 µAH (3.5%), rou-
tine netconnect() is completed, netsend() starts and
performs the five sends (which together consumes 55 µAH
(17.5%)), and the app is completed. However, even after the
app completion, the device continues to draw high power
due to the 3G radio staying in the tail power state for 6 sec-
onds, consuming 187 µAH, 59.6% of the total app energy.

Figure 3 plots the power draw of the same app except
a single difference, the netsend() routine is performed
5 seconds after netconnect(). This program consumes
520 µAH (65% more than the original version) with the
following energy breakdown: rampup (60 µAH, 11.53%),
connect (15 µAH, 2.88%), tail 1 (183 µAH, 35.19%), send
(60 µAH, 11.53%), and tail 2 (200 µAH, 38.46%).

The above examples show that the tail energy in Figure 2
would have existed even if the second routine did not ex-
ist, and hence intuitively the first routine should be held ac-
countable for the tail energy somehow. One simple policy is
to split the tail energy among the two routines either equally
or weighted based on the workload generated. Such a pol-
icy faces several problems: (1) It is not always easy to de-
fine the weights based on the workload generated, e.g., in
this app, should the weight assigned to netconnect() be 3
handshake packets and to netsend() be 5*10KB of pack-
ets? (2) This splitting policy becomes more complicated to
implement and more obscure in understanding the profiling
output in the presence of intermittent component accesses
which result in interleaved productive states and tail states.
(3) Splitting the tail energy may misinform the developer
that if a certain entity, e.g., netsend(), is removed, its part
of tail energy could be saved.

An alternative accounting policy, termed last-trigger pol-
icy, is to account the tail energy to the last entity, out of
all the entities, each of which would have triggered the tail,
i.e., routine netsend() in the case of Figure 2. This ap-
proach avoids the first two problems above, which makes it
not only easier to implement, but more importantly, much
easier to understand by the programmer. However, this ap-
proach still may misinform the developer that if the last trig-
ger, e.g., netsend(), is removed, the tail energy would be
removed. In reality, the same amount of tail energy would
have been consumed irrespective of whether the last trig-
ger existed. For example, in Figure 2 if netsend() did not
exist, netconnect() would have also been followed by a
similar 3G tail.

We also considered other possible policies such as first-
trigger, which accounts the tail energy to the first entity,
out of all the consecutive entities, each of which would
have triggered the tail. Such a policy shares with last-trigger
in encouraging triggers to draft behind each other to save
energy, and in misleading developers that removing the first
trigger would remove the tail. Out of the two, last-trigger
appears slightly more intuitive; the developer can start with
optimizing the last trigger.

Finally, we argue this last “misinforming” problem exists
no matter what accounting policy is used. Hence ultimately,
for an accounting tool to be informative to the developer,
the profiling output needs to make explicit how the energy
due to asynchronous power behavior such as tail energy



Fig. 4: Sdcard FSM for
tytn2 on WM6.

Fig. 5: Assign energy to last sys-
tem call.

is accounted, and the developer needs to understand such
asynchronous power behavior to make meaningful use of
such energy accounting tools.

4.2 Accounting Policies for Asynchronous Power

Following the above discussion, we adopt the last-trigger
policy in eprof: always account the energy lingering beyond
a program entity due to asynchronous power behavior (e.g.,
tail energy) to the last entity, out of all the entities that would
have triggered the power behavior. The policy will be stated
explicitly in the profiling output.

4.2.1 Tail Power State

Since tail energy is wasted as the component is not doing any
productive work, many potential optimizations (e.g., aggre-
gation [5]) are being studied to reduce tail energy. For this
reason, eprof explicitly separates tail energy from the rest,
and reports an “energy tuple” (u, n), where u and n repre-
sent the utilization energy and the tail energy consumption,
respectively, in its profiling output.

We illustrate how the accounting policy is applied to
the tail power state behavior using an example. Figure 4
shows an example of the tail power state in the FSM power
model of sdcard on the tytn2 phone. Any file operation sends
sdcard into a high power state d1 followed by a tail state d2
which continues until 3 seconds of disk inactivity and then
sdcard returns to the base state. Figure 5 shows an example
containing two entities f1 and f2. Entity f1 invokes the first
read call which sends the component to state d1, consuming
u1 energy, followed by a tail consuming n1 which is cut
short by a read call, which again sends the component to
d1, consuming u2. Right after entity f1 ends, f2 starts and
invokes a write call, causing the component to stay in state
d1, consuming u3, followed by a tail state consuming n2.
The tail state lasts beyond the completion of f2.

It is clear (u1, n1), u2 and u3 should be accounted to
the first read call, second read call and the write call,
respectively. Following the last-trigger policy, n2 is charged
to the last system call before the tail state, i.e., write. In
summary, the three system calls get energy tuples (u1, n1),
(u2, 0) and (u3, n2), respectively.

4.2.2 Wakelocks and Exotic Components

WakeLocks and exotic components exhibit similar asyn-
chronous energy drain patterns. Each of them has an on/off

Fig. 6: Splitting energy of a component among concurrent sys-
tem calls.

switch which when turned on (a wakelock is acquired or
GPS/camera is started) starts draining energy and the energy
drain stops only when it is switched off (e.g., the wakelock is
released). We discuss accounting for wakelocks below. Ac-
counting for exotic components is similar.

Figure 1 shows the FSM that models the power state
transitions due to wakelocks on passion running Android. An
entity that acquires a wakelock triggers a component into
a high power state, which can persist after the entity exits
and another entity starts, until the wakelock is released by
this other entity. Following the last-trigger policy, the energy
consumed by the component during the period when the
wakelock was held is attributed to the entity that acquired
the wakelock. Accounting this way helps the developer to
track “wakelock bugs”, an important class of energy bugs in
mobile apps [9] due to missing wakelock releases (§7.3).

4.3 Concurrent Accesses

When multiple threads access a component, there can be
concurrent system calls issued to the component. Figure 6
shows an example where three threads simultaneously ac-
cess sdcard for reading and writing files. diskread1 triggers
a power state change from base to d1. While the component
is serving this request, two other threads invoke two more
requests diskwrite and diskread2.

To perform energy accounting, we first apply linear re-
gression inside each productive power state to estimate the
total duration that component stays in that state based on the
total workload of all system calls. We then divide up the total
energy in that state among the multiple system calls as fol-
lows: we first estimate the completion time of each system
call assuming they have the same rate of making progress,
then split the whole duration into intervals, each with a dif-
ferent number of concurrent system calls, and then split the
energy consumed in each interval evenly among those sys-
tem calls. Such a policy is justified as follows. First, we ob-
served using microbenchmarking that the time to complete
I/O system calls are roughly proportional to their workload,
suggesting the hardware component is mostly fair in carry-
ing out concurrent system calls. Second, smartphone hard-
ware does not export internal information about workload
processing order and hence it is difficult to develop a more
refined policy.



Fig. 7: Eprof architecture overview.

Following the above split policy, the duration while in
power state d1 is split into five intervals with varying num-
bers of active system calls, and d1 is split evenly within each
interval. The tail energy is charged to the last system call
served by the component. The final accounting of sdcard en-
ergy consumption for the three calls is shown in Figure 6.

4.4 Accounting for High Rate Components

The FSM power model [4] does not cover RAM and Organic
LED screen (OLED) since these components are accessed at
much higher rates (and hence called high rate components)
resulting in high overheads in event based modeling. Tra-
ditionally RAM power is modeled using LLC (Last Level
Cache) Misses [15, 16], periodically polled from hardware
(CPU registers). Power draw of OLED screens is dictated by
pixel colors and hence can be modeled by periodically scrap-
ping the screen buffer and computing the energy using sam-
pled pixels [17]. However, the HTC magic does not export
LLC Misses information to the kernel, and perf events [18],
the Linux performance counter system which is still new on
ARM architectures, does not yet support the HTC passion

handset. Also, Google stopped shipping developer phones
with OLED screen in 2011 due to a supply shortage [19].
Hence, we leave RAM/OLED accounting as future work.

5. Eprof Implementation

We describe eprof implementation at the routine granularity.
Accounting at the thread and process granularities follows
naturally.

5.1 Eprof Operations

Figure 7 shows the three components of eprof: (1) code
instrumentation and logging, (2) power modeling and energy
accounting, and (3) profile presentation. In the first phase,
the app source code is instrumented for system-call tracing
and routine tracing. We also discuss in §5.2 how apps built
on top of the Android SDK can be logged without source
code. The instrumented binary is then run on the smartphone
OS/framework with system call logging enabled, to gather
both detailed routine invocation trace and system call trace
at runtime. During the second phase, the routine invocation
trace is played back while at the same time the system call
trace is used to drive the FSM power model to replay the

energy activities. The energy activities are mapped to the
routines according to the accounting policy described in §4.
Finally, eprof outputs the energy profile.

5.2 Implementation

We have implemented eprof on two smartphone OSes: An-
droid and Windows Mobile 6.5 (WM6). Due to page limit,
we only describe our implementation on Android below.
SDK Routine Tracing. Routing tracing logs routing invo-
cations and the time spent per invocation. Apps written with
the Android SDK run inside the Dalvik VM. For such apps,
Android provides a routine profiling framework [20] which
at runtime marks routine boundaries with timestamps and
calculates the runtime of each routine. To reduce the over-
head of retrieving timestamps, we modified the current pro-
filing framework to only count all caller-callee invocations,
and perform periodic sampling to log the routine call stack
and the time at each sampled interval, just as in gprof [3].
NDK Routine Tracing. Android also provides developers
with Native Development Kit (NDK) using which they can
run performance critical parts of their apps outside the VM.
For the NDK part of apps, we used the gprof port of NDK
profiler [21] to perform routine tracing, which requires link-
ing with the Android gprof library.
System-Call Tracing. System-call tracing logs the time and
the call stack of each system call. This is performed in the
framework, the bionic C library, and the kernel. First, apps
written with SDK invoke both traditional system calls such
as network and disk and special framework events, e.g., sen-
sors, location tracking, and camera.We log such system calls
by inserting ADB (Android Debugger) logging APIs where
they are implemented in the framework code [22] to log the
calls (time and parameters) and call stacks. Second, apps
written with NDK only use traditional system calls. How-
ever, since Arm Linux does not support userspace backtrac-
ing from inside the kernel [23], we log the calls and call
stacks at the bionic C library interface. Finally, for both SDK
and NDK apps, we log CPU (sched.switch) scheduling events
in the kernel using Systemtap [24].
Logging without Source Code. In general, a recompile is
required after instrumentation for routing tracing. For the
evaluation in this paper, we modified the framework to au-
tomatically start and stop eprof routine and system-call trac-
ing for the SDK part of all apps. This allows us to perform
energy profiling without needing a recompile and hence the
source code which is often not available (e.g., the Angrybirds
app). The source code is still required for the NDK part of
apps.
Accounting. The logs collected during an app run are post-
processed for accounting. We extended Traceview [25] in
Android SDK, which currently performs runtime account-
ing, to perform energy accounting and data presentation. We
added 3K LOC to the existing 5K LOC in Traceview.
Data Presentation. Eprof outputs energy tuple per entity in
the sorted order (with inclusive/exclusive energy for hier-
archical entities). When routines are the entities, eprof be-



Table 2: Apps used throughout the paper.

App Description App Description

Windows Mobile (on tytn2) Android (on magic)
sd Skin Detection [26] syncdroid Mobile file sync
lchess Local Chess [27] streamer Photo streaming
pup Upload photo albums andoku Sudoku game [28]
cchess Cloud Chess (offload) goOut Location app
pdf2txt PDF to text [29] k9mail Email Client
pslide Photo Slide show wordsrc Game [28]
fft speech recog. [30] andtweet Twitter client [28]

Android (on passion )
browser Google on Browser cnn CNN on Browser
fb Facebook pup Photo uploading
ab AngryBirds mq MapQuest
nyt New York Times app fchess Free Chess [31]

comes a call-graph energy profiler; it mimics the output of
gprof [3] by replacing each time value with a (time, energy)
value tuple. It also outputs a breakdown of the total energy
consumed into per-component energy consumption.

6. Evaluation

In this section, we compare eprof’s accuracy with previous
accounting approaches and measure its overhead.

Applications. Table 2 lists the set of 21 apps used in the rest
of the paper. Some of them are among the top 10 most pop-
ular apps in Android Market while others were downloaded
from several open-source projects [26–30].

6.1 Related Work: Previous Accounting Approaches

The energy accounting problem has been previously stud-
ied in different context. We summarize the two best known
policies proposed: split-time and utilization-based.

The split-time energy accounting scheme simply splits
the time into fine-grained time bins, and accounts the energy
spent (typically obtained directly from a power meter) in a
bin to the sampled running entity (process/thread/routine) in
that bin. Powerscope [32, 33] measures power using an ex-
ternal power meter and accounts energy for mobile systems
like laptops at the routine granularity using split-time ac-
counting. Li et al. [34] use split-time to account OS energy
on commodity hardware, using a system-wide cycle accu-
rate power model to estimate instantaneous power consump-
tion. Quanto [35] also uses the split-time policy to measure
and account system-wide energy in sensor networks for pro-
grammer defined entities.

The recently proposed Cinder [36] and PowerTutor [6,
37] also perform smartphone energy accounting. They differ
from eprof in several aspects. First, they support processes
as the finest accounting granularity. Second, both systems
use utilization-based power models to model and account
energy of each component to the processes. As shown in [4],
utilization-based power models do not capture asynchronous
power behavior found in modern smartphones.

Fig. 8: Accuracy of different accounting policies.

Fig. 9: Accuracy of utilization-based model at different
granularities.

6.2 Accounting Accuracy

It is difficult to measure per-entity accounting accuracy since
there is no easy way to measure the ground truth in the
presence of asynchronous power behavior. We expect the
per-entity accounting accuracy of eprof to be the same as
that of the system-call-based power model it is based on,
since the triggers for the power model, system calls, also
form the finest granularity among the four program entities
that eprof profiles (§2). To compare different accounting
schemes, we compare their aggregate accounting accuracy:
how does the sum of per-entity energy breakdown under
different accounting schemes approximate that of the ground
truth, i.e., the total energy spent as measured using a power
meter [38]? We define accounting “error” as the percentage
difference of the sum of all entity energies except process 0
(which does not use any hardware component) with ground
truth energy measured.

Figure 8 plots the accounting error of the three schemes,
at the process granularity, for a few apps from Table 2 on
Android on passion (results are similar for others). We see
that the error in eprof is under 6% for all apps while that
of utilization-based accounting ranges from 3% to 50% and
of split-time ranges from 15% to 80%. The higher error for
utilization-based accounting is a direct consequence of the
error in utilization-based power models [4]. Split-time ac-
counting, which though utilizes direct power meter read-
ings, performs the worst since it accounts most of the energy
due to asynchronous power behavior to PID 0 (the null pro-
cess), which performs no hardware activity and should be
attributed zero energy.

For system-wide energy accounting at the thread and the
routine granularities, split-time and eprof report the same



errors as at the process granularity, because split-time is
largely oblivious to the accounting granularity as it divides
the time into fixed-sized bins and accounts each bin en-
ergy to the sampled entity, and eprof accounts energy at
the system-call level, which is finer-grained than at the rou-
tine/thread level. In contrast, utilization-based accounting
shows larger error when estimating energy at finer granu-
larities, as shown in Figure 9, since utilization-based power
models incur larger errors in finer-grained estimation [4].

6.3 Logging Overhead

Measuring the logging overhead of eprof on the smartphone
app runtime and energy consumption is tricky since smart-
phone apps are interactive, i.e., their execution involve pe-
riods of inactivities waiting for human input. To prevent
such inactivity periods from diluting the measured over-
head, for each app in Table 2, we isolated its core part
performed in-between human interactions in calculating the
logging overhead, e.g., the code in lchess that corresponds to
computing each computer move, in between the moves
made by the human. The logging overhead of eprof falls
between 2-15% for the apps on WM6 and between 4-11%
for the apps on Android on the two handsets, out of which
about 1-8% is due to system call tracing alone. Microbench-
marking reveals that logging each entry in eprof (syscall
or routine) consumes 2.5±0.5µs on passion (1GHz CPU),
including 1.5±0.2µs overhead of getClock(), and con-
sumes 30µs on tytn2 (400MHz CPU) with 10µs for reading
the clock. Since the logging only incurs overhead on CPU
and memory, the energy overhead for logging is the runtime
overhead multiplied by the CPU power, which comes down
to 0.69-12.99% for the apps on WM6 and between 0.40-
7.35% for the apps on Android. Finally, the logging rate
(including system call tracing) for the apps varies between
60-70 KB/s.

7. Applications

We report on our experience with using eprof to understand
the energy consumption of the 21 apps in Table 2. Due to
page limit, we first briefly summarize the energy bottleneck
of all the apps identified by eprof, and then present an in-
depth analysis of the most popular 5 apps.

7.1 Identifying Energy Hotspots

Figure 10 shows the percentage time and energy of the en-
ergy hotspot routine in each of the 14 apps in Table 2, listed
under WM (tytn2) and Android (magic). Already, this sum-
mary exposes several interesting observations about the en-
ergy consumption of these apps. (1) There is a stark con-
trast in the percentage runtime and the percentage energy
drain for some of the hotspot routines, e.g., goOut spends
over 20% of its energy on GPS routine attachlistener
which runs for under 3% of runtime. (2) The energy con-
sumption behavior of two versions of the same app differ
significantly. Specifically, lchess which runs purely on mo-
bile consumes 30% of its energy in checking the human

Fig. 10: Percentage runtime and energy consumption of
energy hotspots.

Table 3: Session description for the apps used in case study.

App Session Description

browser User opens browser, performs a Google search,
scrolls the HTML page and closes the app.

angrybirds User plays a full game of AngryBirds hitting all
three birds and then closes the app.

fchess User plays two moves of chess game with computer.
nytimes User opens the NYTimes app, app downloads and

displays contents, user scrolls the front page.
mapquest User starts app, app finds location, fetches map tiles

and renders, user then clicks “gas station” button.

move, while cchess spends 27% energy packing and unpack-
ing program state for offloading the computation to the cloud
(as in [39, 40]). (3) The profiling results of andoku and word-
search, each containing thousands of routines, reveal that
their energy bottleneck routines are for building the UI, i.e.,
setTextColorView() and AddRow(), respectively.

7.2 Case Studies

We now present an in-depth analysis of 5 popular apps
running on Android on passion. All the apps were run on 3G;
we skip the WiFi runs due to page limit. Table 3 describes
the session scenario of each app used in the case study.
Table 4 summarizes the statistics of the profiling runs and
where most of the energy is spent in these apps as identified
by eprof. It shows that running these apps for about half a
minute can invoke 29–47 threads, many of which are third-
party modules, and 200K–6M routine calls. The complexity
of these apps is daunting; without eprof, it would be difficult
to understand their energy profile. Overall, the about 30-
second run of these apps drain 0.35%-0.75%of a full battery
charge, a rate which could discharge the entire battery in a
couple of hours.

7.2.1 Android Browser – Google Search vs. CNN

Google search. The Android browser comes with Android
and is arguably one of the most frequently used apps on
Android.We first profiled a 30-second run of the browser for
one dominant usage: Google search, where the user opens
the browser, performs a Google search over 3G, and closes



Table 4: Summary of energy drain of 5 popular apps.

App Run- #Routine calls % 3rd-Party Modules Where is the energy spent inside an app?
time (#Threads) Battery Used

browser 30s 1M (34) 0.35% - 38% HTTP; 5% GUI; 16% user tracking; 25% TCP cond.
angrybirds 28s 200K (47) 0.37% Flurry[7],Khronos[41] 20% game rendering; 45% user tracking; 28% TCP cond.
fchess 33s 742K (37) 0.60% AdWhirl[42] 50% advertisement; 20% GUI; 20% AI; 2% screen touch
nytimes 41s 7.4M (29) 0.75% Flurry[7],JSON[43] 65% database building; 15% user tracking; 18% TCP cond.
mapquest 29s 6M (43) 0.60% SHW[44],AOL,JSON[43] 28% map tracking; 20% map download; 27% rendering

the browser. The Google search page triggers the GPS to
determine user location. The browser process consumes a
total of 2000 µAH out of which about 53%, 31%, and 16%
are spent in CPU, 3G, and GPS, respectively.

The browser forks a total of 34 threads, including 4 http
worker threads, a main thread, and a Webviewcore thread
besides GC (garbage collector), DNS resolver, and other
threads. Less than 500KB of data is transfered over 3G. Fig-
ure 11(a) plots the split of the total browser energy among
different threads with each thread’s energy consumption
further split by phone components. We gain the follow-
ing insight into how the energy is spent in the browser.
(1) Thread http0 consumes the most energy (28%), 24%
of which is spent in 3G tail. This thread performs the bulk
of http I/O (request and response). Thread http1 consumes
another 10% energy. Together, the two http threads consume
38% energy. (2) Two generic Android threads, HeapWorker
and IdleReaper, consume 14% and 10% energy respec-
tively. Most of their energy are spent in 3G tails as follows.
IdleReaper reaps idle TCP connections after a configured
timeout, each of which leads to a 3G tail. HeapWorker cleans
up each network connection upon app exit by sending a TCP
FIN packet, which also often leads to an isolated 3G tail. The
two threads are used in any apps that access the web, and we
term them TCP conditioning utilities. (3) Threads main and
Webviewcore are responsible for loading the browser and
building its GUI. The main thread consumes 10% energy
which is entirely CPU. Webviewcore, which also starts GPS
to track user location, consumes 24% of the total energy,
with 11% and 5% spent in GPS and GPS tails, respectively.
Webviewcore spends most of its energy (24%) in routine
JavaWebCoreJavaBridge.handleMsg() (18%).

To understand where the energy is spent at the routine
level, we plot in Figure 11(b) per-routine energy break-
down for a few selected routines. The energy includes
that of callee routines to better capture the whole func-
tion performed by the routine. The per-routine profiling
clearly shows the energy breakdown among the 3 ma-
jor steps of a Google search. (1) Routine android/net

/http/Connection.processRequests() which pro-
cesses network requests on behalf of the browser and hence
involves networking, consumes 35% of the browser energy
(7% in CPU for processing http). (2) Processing compressed
http response after downloading consumes 15% energy, out
of which 5% is spent in decompressing the compressed html
response (routine java/util/zip/GZIPInputStream

.read()). (3) Routines from class android/view/ViewRoot.java
which renders GUI consume about 5% energy.
Browsing a CNN page. When the user surfs CNN, the
browser spawns 30 threads, and consumes a total of 2400
µAH out of which about 40%, 60%, and 0% are spent in
CPU, 3G and GPS, respectively. Figures 12(a)-12(b) again
plot the per-thread and per-routine energy split, which draw
contrast with the Google search scenario. (1) Surfing the
CNN page results in higher data download (1200 KB) and
invokes four different http threads to share downloading and
parsing, which consume 26%, 9%, 11% and 8% energy, re-
spectively, for a total of 54%, higher than the 38% by http0
and http1 in Google search. (2) Thread IdleReaper, which
reaps idle TCP connections through routine IdleCache

.IdleReaper.run(), consumes more energy (15%) than
in Google search due to reaping more sockets. (3) Webview-
core consumes only 10% energy in CPU, as it no longer
starts GPS to track user location.

These profiling results of the Android browser suggest
that TCP conditioning (reaping and proper shutdown) over
3G can waste significant energy in 3G tails. We discuss
strategies to reduce this energy drain in §8.3.

7.2.2 AngryBirds

We next profiled one of the most popular smartphone games,
downloaded over 50M times from Android Market, angry-
birds. In the profile run, the user plays a single instance
of the game over 3G, and the app spawns 35 threads. The
“GLThread” thread handles gameplay and the touch events,
and invokes the third-party Khronos EGL interface [41] to
paint the screen for game events. It also comes bundled with
Flurry [7], a third-partymobile data aggregator and ad gener-
ator. Flurry runs as a separate thread, collects various statis-
tics about the phone including its location, OS, and software
version, and uploads the data to its server. Later, it down-
loads and renders ads during gameplay.

Figures 13(a)-13(b) show the energy breakdown of the
top 5 threads and routines, which provides the following in-
sight. (1) The core part of the app, thread GLThread, though
CPU intensive, consumes only 18% of the total app energy.
Within the thread, the Khronos API consumes 9% energy
over 1K calls made to the API routine, and the rovio ren-
derer spends another 9% energy in over 1K calls. Rendering
the ad consumes 1% energy. (2) The Flurry thread consumes
most of the energy (45%). Within the thread, GPS location
tracking consumes 15% energy and its tail consumes addi-
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Fig. 11: Google search on browser.

(a) Per-thread

(b) Per-routine

Fig. 12: CNN on browser.
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Fig. 13: AngryBirds.
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Fig. 14: Free Chess.
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Fig. 15: NYTimes.

(a) Per-thread

(b) Per-routine

Fig. 16: MapQuest.

tional 4% energy; collecting the handset information con-
sumes less than 1% energy (CPU only); uploading the infor-
mation and downloading the ads consume 1% energy with
only under 2KB data transfered over 3G; but the 3G tail
consumes 24% energy. (3) When the app is closed, thread
HeapWorker performs cleanup, closing an unclosed socket
as part of the finalize method (Figure 13(b)), which creates
a 3G tail consuming 28% of the app energy.

7.2.3 Free Chess

We next profiled the most popular free chess game [31] on
Android Market, downloaded over 10M times. Like angry-
birds, this app downloads ads over 3G which consumes most
of its energy. It spawns 37 threads during the 33-second

profile run. The main thread is responsible for the game-
play, AdThread fetches ads over the network, and IdleReaper
reaps remote server TCP connections after timeout.

Figures 14(a)-14(b) show a clear four-way energy break-
down. (1) AdThread which runs third-party AdLibrary
AdWhirl [42] through routine com/adwhirl/PingUrl

.run(), consumes 50% energy, almost entirely spent in 3G
tail. (2) The main thread which paints the board consumes
only 20% energy entirely in CPU through routines android
/view/ViewRoot.draw() and uk/co/aifactory/fireballUI
/GridBaseView.onDraw(). The user plays 2 moveswhich
are responded by the computer’s AIMoves. (3) The AIMoves
are computed through two different threads (AIMove1 and
AIMove2), each calling routine uk/co/aifactory/chessfree



/ChessGridView.Eng.AIMove(), consuming a total of
10% energy. (4) IdleReaper consumes 18% energy, again
almost entirely in 3G tail.

The above energy profiling provides an important insight:
free apps like fchess and angrybirds spend under 25-35% of
their energy on gameplay, but over 65-75% on user tracking,
uploading user information, and downloading ads.

7.2.4 NYTimes

We next profiled the Android app nytimes which has been
downloaded over 10M times and is representative of the
family of publisher provided viewing apps. The app spawns
29 threads during the profile run to fetch news and display
the news. It uses Proguard [45] to obfuscate its class and
method names. As a result, understanding eprof output was
slightly complicated.

Figure 15(a) shows a clear four-way energy breakdown.
(1) The main thread which activates GUI and displays the
news downloaded, consumes only 5.2% energy. (2) The
DownloadManager thread consumes the bulk of the app
energy (65%). It downloads about 1MB of data over 3G
and stores it in a local SQL database. Interestingly, we ob-
serve after the main thread finished displaying the news,
until when the app consumed only 25% of its total energy,
DownloadManager continues to utilize CPU and network,
draining the remaining 75% energy. (3) Like angrybirds, ny-
times also runs Flurry consuming 16% of the app energy. (4)
Heapworker consumes 15% energy, again mostly in 3G tail.

Figure 15(b) shows the energy split for the top 3 en-
ergy consuming routines inside DownloadManager. The app
spends 30% of its energy in routine task.w.a(), which
has an obfuscated name and hence we could not infer its
function, 24% in deserializing the fetched content (Jackson
JSON library), and 7% in the SQL database.

7.2.5 MapQuest

Finally we profiled the MapQuest location tracking app,
which is representative of the family of location-oriented
search apps. Upon starting, the app locates user location us-
ing the third-party SkyhookWireless (SHW) [44] engine,
downloads and deserializes (using Jackson JSON [43])
map tiles, and renders the map. The user then searches
for gas stations nearby. The app consumes a total of 3600
µAH energy, split as 28%, 42%, and 30% among CPU,
3G and GPS, respectively. Figures 16(a)-16(b) show that
SHW consumes 29% energy via two threads through routine
SkyHook.run(), the main thread consumes 18% energy
performingGUI andmap rendering (via routine MapView.OnDraw()
and JSON parsing), and routine search.gas(), invoked
when the user clicks the gas station search button, consumes
8% of the app energy, 4% of which is spent in its own 3G
tail.

The energy breakdown reveals that the ratios of 3G and
GPS energy over their tails differ drastically: 3G spends 82%
in its tail while GPS spends only 15% in its tail. The cause
of such different tail energy footprint is the way these com-
ponents are used. GPS is used for continuous tracking and

is typically turned on once to start tracking, and turned off
to stop tracking, generating one GPS tail. Network transfers
are often performed via intermittent sending/receiving small
amount of data, incurring many tail periods in between.

7.3 Detecting Energy Bugs

We show how eprof helps to find an instance of the class of
wakelock energy bugs [9] in FaceBook (FB). As discussed
in §3, apps with background services typically use the wake-
lock acquire/release APIs exposed by the smartphone OS to
keep the phone awake, e.g., to perform intermittent I/O ac-
tivities. A wakelock energy bug happens when a wakelock is
held longer than necessary due to a missing lock release.

facebook.katana.HomeActivity is one of the main
activities of the FB app. In a typical run of the app, the user
launches the app, HomeActivity downloads and displays the
FB home page, while the user navigates. When using eprof
to profile a 30-second run of the FB app (v1.3.0, released Oct
2010), which spawned 50 threads, including background ser-
vices, with over 2M routing calls, and consumed a total of
1200 µAH energy, we observed from the per-routine pro-
filing output of eprof that routine com/facebook/katana
/service/FacebookService.onStart() which starts
the background service consumed 25% of the app energy,
out of which 18% was attributed to routine com/facebook
/katana/binding/AppSession.acquireWakeLock().
This much energy due to a wakelock is suspiciously high
and is typically a symptom of wakelock bugs. A close look
at the call-graph output of eprof shows the service routine
never called the release API to release the wakelock until
the app completion. Apparently the wakelock held by the
app continued to drain power even after the app termination,
by not allowing the CPU to sleep.

We decompiled the FB installer to Java source code using
ded [46], and confirmed that indeed the said routine acquired
the wakelock and never released the wakelock due to a
programming error. FB fixed the bug in its next release
(v1.3.1) which we verified as by inserting a release call of
the wakelock as indicated by eprof.

8. Optimizing I/O Energy using Bundles

Our experience with profiling popular apps using eprof re-
veals several key observations about the energy consumption
of modern smartphone apps. The observationsmotivate us to
propose a new, aggregate accounting presentation called I/O
energy bundle, which is at a higher level than the default per-
entity output of eprof, yet more concisely captures where the
energy is spent in a smartphone app and more importantly,
why? Such a presentation offers more direct help to the de-
veloper in optimizing the app energy.

8.1 Observations

Our extensive experience with profiling popular apps using
eprof in §7 reveals the following key observations.
(1) I/O consumes the most energy. Most of the energy in
an app is spent in accessing I/O components, and tail energy



Table 5: Energy breakdown summary per app.

App Total I/O Bundles #I/O Routines
Energy /total routines

Handset:tytn2 running WM6.5
pslide 92% 3 (3 Disk) 2/21
pup 57% 3 (3 NET) 3/32

Handset:magic running Android
syncdroid 50% 4 (1 NET, 3 DISK) 8/0.9K
streamer 31% 3 (3 NET) 4/1.1K

Handset:passion running Android
browser 69% 3 (2 Net, 1 GPS) 5/3.4K

angrybirds 80% 4 (3 NET, 1 GPS) 5/2.2K
fchess 75% 2 (2 NET) 7/3.7K
nytimes 67% 2 (1 NET, 1 GPS) 16/6.8K
mapquest 72% 3 (2 NET, 1 GPS) 14/7.1K

pup 70% 1 (1 NET) 3/1.1K

typically accounts for the largest fraction of the I/O energy.
CPU consumes a small fraction of the app energy, most of
which is spent in building up the GUI of the app. The second
column of Table 5 shows that most apps spend 50-90% of
their energy in I/O.
(2) I/O energy is spent in a few bundles. We observe
that apps typically consume I/O energy in a few, distinct
lumps. Within each lump, an I/O component actively and
continuously consumes power, i.e., it stays in a high power
state or the tail power state. For example, Figure 2 shows a
lump which consists of several network events – a connect
and 5 sends which together drive the 3G FSM from the base
state to active states, and back to the base state. The 3G
energy spent in the lump consists of ramp-up energy (for
connect), energy consumed for TCP handshake and sends,
and tail energy. Similarly, in browser performing a Google
search (§7.2), there are two overlapping I/O lumps, one of
3G consisting of network connects and sends by the http
threads, and the other of GPS consisting of GPS start/stop.

We define an I/O energy bundle as a continuous period
of an I/O component actively consuming power, which cor-
responds to the duration in traversing from one instance of
the base power state to the next in the component’s power
FSM. Table 5 (third column) shows that the high I/O energy
of apps is typically spread across very few (1 to 4) bundles.
(3) Very few routines perform I/O. We further observe a
stark contrast between the way the CPU and I/O compo-
nents are utilized by smartphone apps: CPU usage is typi-
cally split between thousands of routines of an app, though
with varying amount, whereas I/O activities arise from very
few routines, called by many callers. The intuition behind
this finding is that modular programming dictates imple-
menting a few generic routines to perform I/O activities,
rather than dispersing them throughout the code. For exam-
ple, in event based I/O programming with select(), the rou-
tine containing the select loop performs nearly all the net-
work I/O of the app. In MapQuest, routine runRequest()
in com/mapquest/android/util/HttpUtil.java per-

forms all the HTTP requests. Table 5 (last column) shows
that the number of routines performing I/O versus the to-
tal number of routines called by each app (on Android this
includes framework routines called by the app). We ob-
serve that very few routines, between 4 to 8, are responsible
for driving I/O components. MapQuest and NYTimes show
higher numbers as third-party threads perform their own I/O.

8.2 Bundle Presentation

The above three observations reveal a key insight into how
energy is spent in an app: I/O energy accounts for the bulk of
an app’s energy, and it arises in a few bundles, each of which
involves a few I/O performing routines. This insight suggests
that a more direct way of helping a developer to understand
and optimize the energy consumption of an app is to focus
on its I/O energy bundles. We thus propose a bundle-centric
accounting presentation which consists of an FSM of the
I/O component for each bundle during the app execution,
annotated with the relevant routines triggered during that
bundle.We show in our case study below that one FSM often
captures multiple occurrences of identical bundles.

The bundle presentation is generated as follows. For each
bundle captured during the app execution, the productive
power states of the FSM of the component are first anno-
tated with the syscall events and hence routines that drove
the FSM to those states. Since very few routines are respon-
sible for I/O activities, it is easy to visualize this small set
of routines in the annotated FSM. Next, for each instance
the component spends in the tail state, we annotate the tail
state with the routines called by the app during that period,
including routines that use other components, usually CPU.
Since the app can call several (possibly thousands) routines
during a tail state, we only include the top three most time-
consuming routines during the tail state.

8.3 Case Studies

Now understanding the I/O energy of an app boils down to
two questions: why are there so many bundles and why is
each bundle so long? We have used the bundle accounting
presentation to quickly gain insights to these questions and
consequently hints on how to optimize the I/O energy of
nearly all the apps in Table 5. Due to page limit, we present
our experience with four apps below.

8.3.1 Why is a bundle Long?

Pup. Figure 17 shows the bundle presentation for pup dur-
ing a 30-second app run, which consists of a single 3G bun-

dle that lasts 25 seconds, consuming 70% of the app energy.
The bundle presentation clearly shows why the bundle con-
sumes 70% energy. It shows that once one photo is sent (in
Net High state), the FSM returns to the 3G tail state, dur-
ing which time it reads the next photo, computes a hash for
it, and again uploads it over the network. The app performs
CPU computation during the 3G tail which elongates the 3G
tail; the tail could have been shorter if the app uploaded the
next photo sooner. Further, the above interleaving of net-
work and computation activities happens three times. Such



Fig. 17: Bundles in Pup. Fig. 18: Bundles in NYTimes. Fig. 19: Bundles in PSlide. Fig. 20: A bundle in FChess.

information gives the programmer the hint that the app’s I/O
energy can be cut down by aggregating network activities
which would reduce the three 3G tails into one.
NYTimes. Figure 18 shows the single 3G bundle of Down-
loadManager thread. Similarly as pup, this bundle performs
periodic I/O and computation 18 times to build its database.
In each iteration, it reads one chunk of data and stores it into
its database after deserializing.

8.3.2 Why Are There So Many bundles ?

Pslide. Figure 19 shows three similar looking bundles during
the app run. Routine ReadPic() reads a photo from sdcard
which triggers sdcard into a high power state followed by the
tail state consuming 75mA. During the tail state, the app dis-
plays the photo and sleeps for 5 seconds, during which (after
3 seconds) the FSM returns to the base state. This process
is repeated three times. The bundle presentation shows that
the three separate bundles waste three tail energies. The three
bundles could be merged into one which incurs only one tail
by aggregating the reading of sdcard photos.
FChess. Figure 20 shows the first bundle where app com-
ponent Adwhirl [42] fetches ads over 3G. Once the ad is
fetched and displayed, the thread goes to sleep and the 3G
FSM returns to tail. The second bundle (not shown) involv-
ing IdleReaper and its 3G tail (§7.2.3) can be avoided if this
thread cleans up its TCP connections.

8.3.3 Optimizing I/O Energy

The case studies above show how bundle analysis gives hints
on restructuring the source code to minimize the number
of bundles and the length of each bundles. For the apps for
which we had source code, we reorganized the code structure
by following these hints. Rerunning the restructured apps
shows pslide, pup, streamer, and syncdroid reduced their
total energy by 65%, 27%, 23% and 20%, respectively,

9. Related Work
Application profilers. Performance profiling is a long stud-
ied topic. Running time profiling has been proposed at the
application level [3, 47, 48] to monitor the call graph trace
and estimate the running time of routines, for object oriented
languages [49, 50], and at the kernel level [51]. Eprof is con-
cerned with profiling energy consumption which is not lin-
ear as time. Several energy profiling schemes have been pro-
posed for desktops [34], for mobile devices [52], and for sen-
sor networks [53]. These schemes estimate the energy con-
sumption of a routine based on strict time boundaries of the

routines and hence can incur significant error when applied
to profiling smartphone apps (§6).
Characterizing smartphone energy consumption. Carroll
and Heiser [54] measured the power consumed by different
phone components under different application loads by hard-
wiring individual power meters to different phone compo-
nents. Shye et al. [55] and Zhang et al. [6] built linear regres-
sion based models for modeling app level power consump-
tion and profiled several apps including Google Map and
Browser. All these work measure per-app or per-component
energy drain on smartphones. Eprof is capable of measuring
intra-app energy consumption and gives insights into energy
breakdown per thread and per routine of the app.
Mobile energy optimization. Finally, a number of special-
ized energy saving techniques on mobiles have been pro-
posed, e.g., for specific applications on mobile systems [56,
57], for a specific protocol [58, 59], via offloading [39, 40],
and via delaying communication [60]. Eprof is a general-
purpose fine-grained energy profiler that directly assists an
app developer in the app energy optimization cycle.

10. Conclusion

This paper makes three contributions towards answering the
ultimate question faced by millions of smartphone users and
developers today: Where is the energy spent inside my app?
We first present eprof, the first fine-grained energy profiler
for smartphone apps and its implementation on Android and
Windows Mobile. Eprof adopts the last-trigger accounting
policy to most intuitively capture asynchronous power be-
havior of modern smartphone components in mapping en-
ergy activities to the responsible program entities. We then
present an extensive, in-depth study using eprof to gain in-
sight of energy usage of smartphone apps using a suite of
21 apps. Finally, we propose bundles, a new presentation of
energy accounting, that helps app developers to quickly un-
derstand and optimize the I/O energy drain of their apps.

Eprof opens up new avenues for studying smartphone en-
ergy consumption. It can be readily used to compare the en-
ergy efficiency of different implementations of the same app
(e.g., Firefox vs. the Android browser). The energy account-
ing engine of eprof can be combined with compiler tech-
niques such as static analysis to develop energy optimizers
that automate the process of restructuring app source code to
reduce their energy footprint, and with the OS scheduler to
develop energy-aware process scheduling algorithms.
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