

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Executive Summary March 2019

Co-chairs: Yolanda Gil and Bart Selman

Decades of artificial intelligence (AI) research have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, converse about order placement, and control cars. The ubiquitous deployment of AI systems has not only created a trillion dollar AI industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair and trustworthy as well as more competent about the world in which they (and we) operate. Future AI systems will be rightfully expected to handle complex tasks and responsibilities, engage in meaningful communication, and improve their awareness through experience.

The next generation of AI systems have the potential for transformative impact on society. For example, lifelong personal assistants will enable an elderly population to live longer independently, AI health coaches will provide advice for lifestyle choices, customized AI tutors will broaden education opportunities, and AI scientific assistants will dramatically accelerate the pace of discovery. Recognizing that AI will be a major driver of the economy over the next several decades, Asia and Europe are making multi-billion dollar AI investments. With strategic investments, the US can remain the preeminent leader in AI and benefit from its broad societal and economic impacts.

Achieving the full potential of AI technologies poses research challenges that will require significant sustained investment and a radical transformation of the AI research enterprise. This is the main finding of a recent study by leading AI experts carried out by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a roadmap for AI research and development over the next two decades.

The 20-year research roadmap for AI envisions three major areas of significant potential impact:

- *Integrated intelligence*, including foundations for principled combination of modular skills and capabilities, contextualization of general capabilities to suit particular uses, and creation and use of open shared repositories of machine understandable world knowledge.
- *Meaningful interaction*, comprising productive collaboration, diverse communication modalities, responsible and trustworthy behaviors, and fruitful online and real-world interaction.
- *Self-aware learning*, ranging from robust and trustworthy learning, learning from few examples and through instruction, developing causal and steerable models from numerical data and observations, and real-time intentional sensing and acting.

Underlying these research directions is the quest to understand intelligence in all forms (artificial, human, animal) and contexts. The AI community is eager to pursue this research agenda, but there are major impediments to making substantial headway.

First, the field of AI has reached a maturity level that goes beyond the initial academic focus on algorithms and theories and into embracing live instrumented deployments, continuous data collection, social and interactive experimentation, dynamic environments, and massive amounts of knowledge about a constantly changing world. This requires new facilities that do not exist in academia today. Although major AI innovations have roots in academic research, universities now lack the massive resources (unique datasets, special-purpose computing, extensive knowledge graphs, well-trained AI engineers, etc.) that have been acquired or developed by major IT companies. These are fundamental capabilities to build forward-looking AI research programs. This also puts universities at a serious disadvantage in terms of attracting talented graduate students and retaining influential senior faculty. Moreover, because AI resources in major IT industry labs are generally proprietary, this uneven playing field also negatively affects smaller businesses and non-IT industry sectors, as well as government organizations, all of which have traditionally benefitted from the open nature of academic research.

Second, research requires highly interdisciplinary teams that can only succeed in long-term sustained programs that are currently rarely available. AI challenges span all areas of computer science, as well as cognitive science,

psychology, biology, mathematics, social and natural sciences, engineering safety, public policy, ethics, education, and communication, to name a few.

Third, the overwhelming demand and excitement surrounding data-rich machine learning has caused a redirection of faculty, students, and curricula towards this particular area of AI, at the expense of other AI areas that are crucial for a broader research roadmap.

Fourth, the need for AI expertise surpasses current production of university graduates with AI skills at the undergraduate, masters, and PhD levels. Many PhD level AI graduates in the US find attractive opportunities abroad. Although there is great demand for AI practitioners and data scientists, universities lack the facilities to prepare students properly for industry settings.

Achieving this vision will require a reinvention of the AI research enterprise to create a comprehensive national AI infrastructure and to re-conceptualize AI workforce training. The 20-year AI research roadmap includes the following specific recommendations:

I --- *Create and operate a National AI infrastructure* to serve academia, industry, and government through four interlocking capabilities:

- a) *Open AI Platforms and Facilities*: a vast interlinked distributed collection of "AI-ready" resources (growing datasets, software libraries, knowledge repositories, instrumented homes and hospitals, robotics environments, cloud services, etc.) contributed by and available to the research community as well as to industry and government.
- b) *Sustained Community-Driven AI Challenges*: organizational structures that coordinate the formulation by researchers of well-defined challenge roadmaps to jointly address key problems, reformulate them in unison with new advances, promote integration and well-engineered systems, and create shared resources in the Open AI Platforms and Facilities.
- c) *National AI Research Centers*: concentrations of first-class researchers, including multi-year funded Faculty Fellows affiliated with a range of academic institutions and Industry Resident Fellow positions from other organizations. Together, these will create critical mass to address core AI research challenges and facilitate technology transfer to industry.
- d) *National AI Laboratories*: government organizations that will provide sustained capabilities and AI experts to support the Open AI Platform and AI Challenges, and address vertical sectors of public interest such as health, policy, education, and science.

II --- Re-conceptualize and train an all-encompassing AI workforce

- a) *Recruitment programs for AI*, including grants for talented students to obtain advanced graduate degrees, retention programs for doctorate-level researchers, and engagement of underrepresented groups.
- b) *Broadening AI curriculum and incentivizing non-traditional and interdisciplinary AI studies*, with priority to AI policy and law, as well as AI safety engineering.
- c) *Training highly skilled AI engineers* and data scientists through the Open AI Platform, thereby significantly growing the pipeline through community colleges and workforce retraining programs.

The combination of shared infrastructure capabilities and a massive skilled workforce will put the United States in a unique position to continue to be the world's leader in AI research, development, and technology transfer, by 1) pursuing the forward-looking AI research that will lead to sustained and broad innovations in AI; 2) creating unique, comprehensive, and effective AI capabilities; 3) attracting and retaining the best talent in fertile research settings; 4) creating extensive human capital in this crucial technology area; and 5) driving AI technologies to address important problems in sectors less favored by industry, such as scientific discovery, education, and public policy.

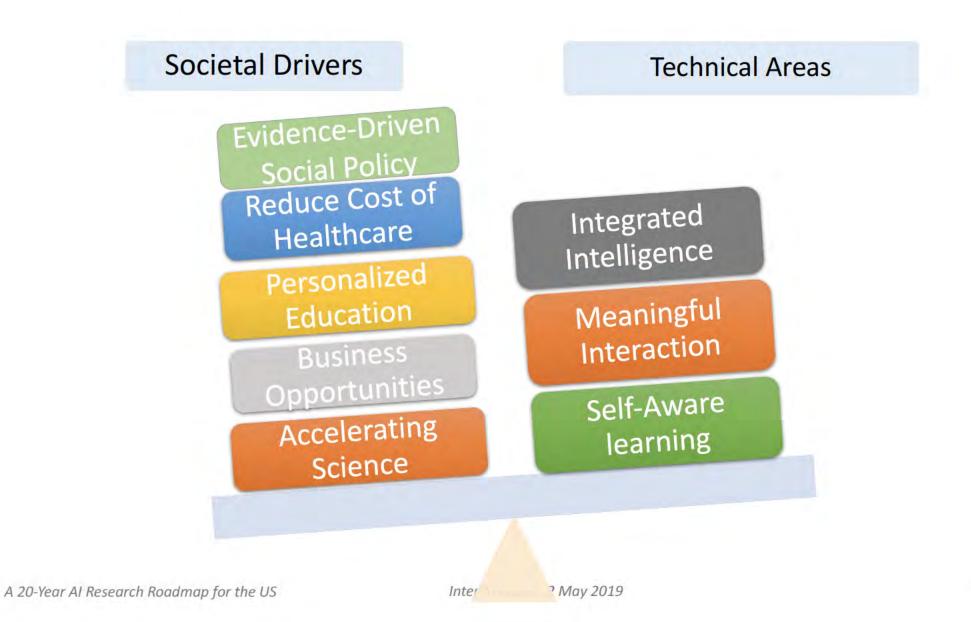
This is the result of the community road mapping effort which took place in the fall 2018 and winter of 2019. Information about the AI road mapping effort can be found here (<u>https://cra.org/ccc/visioning/visioning-activities/2018-activities/artificial-intelligence-roadmap/</u>). This material is based upon work supported by the National Science Foundation under Grant No. 1136993. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Yolanda Gil (USC) and Bart Selman (Cornell), co-chairs

EPIC-19-09-11-NSCAI-FOIA-20200731-7th-Production-pt5-AI-Research-Roadmap-Presentation

Developing a 20-Year AI Research Roadmap for the US

CRA Computing Community Consortium, Association for the Advancement of Artificial Intelligence (AAAI), and the computing research community


Roadmap Co-Chairs:

Yolanda Gil, University of Southern California, AAAI President Bart Selman, Cornell University, AAAI President-Elect

May 2, 2019

Identifying Societal Drivers

- 1. Boost Health and Quality of Life: Prevention of illness and elderly ailments, mental/behavioral health, reducing cost (25+% feasible) while improving care, remote patient care.
- 2. Lifelong Education and Training: Personalized, scalable education support. Improve the AI knowledge and skills of people who will lose jobs. Training next generation of AI specialists, data scientists, and software engineers
- **3. Reinvent Business Innovation and Competitiveness:** Evidence-driven companies, which would increase productivity and value and open new sectors/products
- 4. Accelerate Scientific Discovery and Technological Innovation: Biomedical, environmental, new materials, personalized services, robotics, self-driving cars, etc.
- **5. Social Justice and Policy:** Engaging and empowering disadvantaged communities. Improving civic and political discourse
- 6. Transform Cyber Defense and Security: AI driven systems can compensate for a relatively small cyber defense workforce, adversarial reasoning

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Research Priorities

Integrated Intelligence

- Science of integrated intelligence
- Contextualized AI
- Open knowledge repositories
- Understanding human intelligence

Meaningful Interaction

- Collaboration
- Trust and responsibility
- Diversity of interaction channels
- Improving online interaction

Self-Aware Learning

- Robust and trustworthy learning
- Deeper learning for challenging tasks
- Integrating symbolic and numeric representations
- Learning in integrated AI/Robotic systems


A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Δ

Significant Scientific Advances Are Driven by Substantial Long-Term Investments

- Other sciences have had significant US infrastructure and research investments with phenomenal outcomes
 - Most were high-risk investments (eg LIGO)
- AI has become a mature science
 - But lacks substantial investments to reach new levels
- Al investments would be low-risk high-return

Apollo Program 1960-'72: 25 Billion 2019: 144 Billion

Human Genome Project 1991: \$2.7 Billion 2019: \$5 Billion

Hubble Telescope 1990: \$1.5 Billion 2019: \$3 Billion

A 20-Year AI Research Roadmap for the US

019: \$5 Billion cope

Interim report, 2 May 2019

LIGO and Gravitational Waves 1992: largest NSF-funded project 2019: \$1.1 Billion

Major International AI Investments

- Just in 2019, China is establishing at least 4 National AI R&D Centers of Excellence. Each with \$50M/yr support and affiliated with major universities (e.g. Peking U and Tsinghua). Each center will employ hundreds of AI scientists and software developers.
- Total Chinese AI R&D investments over the next 5 years is in the billions of dollars.
- Goal: To become world leader in AI by 2030.

US Congressional Report Report: China will outspend US on Al research by end of 2018

In a separate initiative, the MOE also plans to launch a new five-year AI talent training program to train 500 more AI instructors and 5,000 more top students at top Chinese universities.⁴²

A 20-Year AI Research Roadmap for the US

European Union To Invest 20 Billion Euros in Al

nature

Europe's next €1-billion science projects: six teams make it to final round

AI enhancement included in the shortlist each funded to the tune of around €1 billion over 10 years.

Bloomberg

U.K. Unveils \$1.4 Billion Drive Into Artificial Intelligence

U.S. tech giants, European telecoms firms, Japanese venture capital and the U.K. government has put together a 1 billion-pound (\$1.4 billion) investment into the U.K. artificial intelligence industry, as governments weigh how to compete with China.

The deal comprises a total of 300 million pounds of private financing, 300 million pounds of new government spending in addition to 400 million pounds the state has already announced.

Interim report, 2 May 2019

REUTERS

Germany plans 3 billion in AI investment

WIRED

6

The French government will spend €1.5 billion (\$1.85 billion) over five years to support research in the field, encourage startups, and collect data that can be used, and shared, by engineers.

> EPIC-2019-001-002626 001911

Overview of Research Priorities and Recommendations

A 20-Year AI Research Roadmap for the US

Key Recommendations: National Infrastructure for AI and Workforce Training

AI Research Centers

- Focused on cross-cutting research themes
 - Examples: Center on AI Trust and Responsibility, Center on Integrated Intelligence, etc.
- Resources in each center would include at least:
 - 100 full time faculty (in AI and other relevant disciplines)
 - 50 visiting faculty fellows and industry fellows
 - 200 Al engineers
 - 500 full time students (graduate and undergraduate)
 - Computing and infrastructure support
- Multi-university centers with affiliates
- Multi-decadal funding at \$100M/yr levels
- Train students at all levels
- Small-scale example models: Allen Institute for AI, CMU's SEI, USC's ICT

Mission-Driven AI Centers

- Focused on societal drivers
 - Examples: Al-ready hospitals, Al-ready homes, Already schools, VR/Robotics labs, etc.
- Living laboratories for hands-on research and collection of unique data
- Operations as well as workforce training
- Directors must have substantial AI credentials
- Resources in each center would include at least:
 - 50 permanent AI researchers
 - 50 visitors from AI Research Centers
 - 100-200 Al engineers
 - 100 domain experts and staff (eg health experts collaborating in AI research)
- Multi-decadal funding at \$100M/yr levels
- Analogous to Google's DeepMind (larger scale, approx. 400 Al scientists + 600 Software developers), SLAC, NCAR, etc.

A 20-Year AI Research Roadmap for the US

Developing a 20-Year AI Research Roadmap for the US

CRA Computing Community Consortium, Association for the Advancement of Artificial Intelligence (AAAI), and the computing research community

Roadmap Co-Chairs:

Yolanda Gil, University of Southern California, AAAI President Bart Selman, Cornell University, AAAI President-Elect

May 2, 2019

Important Note

- This presentation gives an overview of ongoing efforts to create a 20-Year AI Research Roadmap for the US. It summarizes current views, and introduces preliminary ideas for potential recommendations.
- The presentation captures interim ideas, and is intended to promote community input and discussion.

A 20-Year AI Research Roadmap for the US

Significant Scientific Advances Are Driven by Substantial Long-Term Investments

- Other sciences have had significant US infrastructure and research investments with phenomenal outcomes
 - Most were high-risk investments (eg LIGO)
- Al has become a mature science
 - But lacks substantial investments to reach new levels
- Al investments would be low-risk high-return •

Apollo Program 1960-'72: 25 Billion 2019: 144 Billion

Human Genome Project 1991: \$2.7 Billion 2019: \$5 Billion

Hubble Telescope 1990: \$1.5 Billion 2019: \$3 Billion

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

LIGO and Gravitational Waves 1992: largest NSF-funded project 2019: \$1.1 Billion

Major International AI Investments

- Just in 2019, China is establishing at least 4 National AI R&D Centers of Excellence. Each with \$50M/yr support and affiliated with major universities (e.g. Peking U and Tsinghua). Each center will employ hundreds of AI scientists and software developers.
- Total Chinese AI R&D investments over the next 5 years is in the billions of dollars.
- Goal: To become world leader in AI by 2030.

US Congressional Report Report: China will outspend US on Al research by end of 2018

In a separate initiative, the MOE also plans to launch a new five-year AI talent training program to train 500 more AI instructors and 5,000 more top students at top Chinese universities.⁴²

A 20-Year AI Research Roadmap for the US

European Union To Invest 20 Billion Euros in Al

nature

Europe's next €1-billion science projects: six teams make it to final round

AI enhancement included in the shortlist each funded to the tune of around €1 billion over 10 years.

Bloomberg

U.K. Unveils \$1.4 Billion Drive Into Artificial Intelligence

U.S. tech giants, European telecoms firms, Japanese venture capital and the U.K. government has put together a 1 billion-pound (\$1.4 billion) investment into the U.K. artificial intelligence industry, as governments weigh how to compete with China.

The deal comprises a total of 300 million pounds of private financing, 300 million pounds of new government spending in addition to 400 million pounds the state has already announced.

Interim report, 2 May 2019

REUTERS

Germany plans 3 billion in AI investment

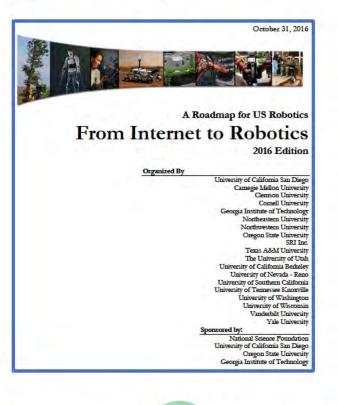
WIRED

13

The French government will spend €1.5 billion (\$1.85 billion) over five years to support research in the field, encourage startups, and collect data that can be used, and shared, by engineers.

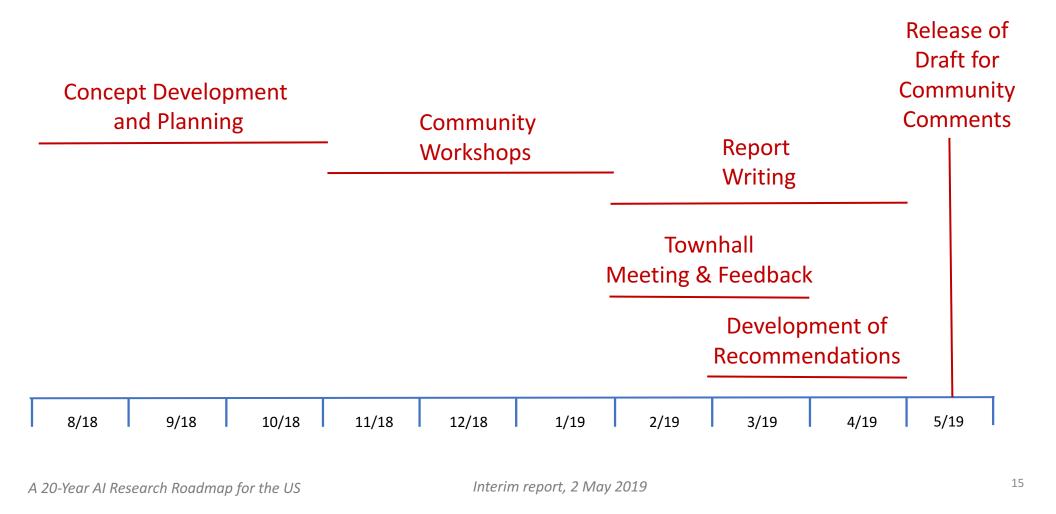
> EPIC-2019-001-002633 001918

A 20 Year AI Research Roadmap for the US


- Objectives
 - 10 20 year research roadmap
 - Guidance for funding agencies and Congress
 - Relate to:
 - Al research in industry
 - International AI initiatives
- Computing Community Consortium with support from US National Science Foundation
 - CCC has developed prior research roadmaps, such as the Robotics Roadmap that led to the US National Robotics Initiative
 - In collaboration with the Association for the Advancement of Artificial Intelligence (AAAI)
 - Premier scientific society for AI, more than 250 elected fellows

Association for the Advancement of Artificial Intelligence

interim report, 2 May 2019


001919

Computing Research

14

Association

Timeline of AI Research Roadmap

Timeline for Development of AI Roadmap

- 3 small by-invitation workshops (Nov-Jan)
 - WS1: Integrated intelligence
 - WS2: Meaningful interaction
 - WS3: Learning and robotics
- Townhall at AAAI (Jan)
- Executive summary release and feedback gathering (Feb-March)
- Report release and community feedback period (April)
- Final report (May)

A 20-Year AI Research Roadmap for the US

Community Participation in the Development of Roadmap

- Workshops with diverse participation from the community
 - 41 academic institutions and 9 industry involved
 - Some participants with appointments in both academia and industry
 - Participants were asked to develop research agenda 20 years forward
 - Participants also reflected on related topics such as the historical evolution of the field of AI, the multidisciplinarity of the AI research agenda, AI research infrastructure, the rapid growth of AI in industry labs and how it has affected academia, AI funding programs and agencies, and the public understanding and perception of AI technologies
- Executive summary released for comments
 - Feedback obtained from diverse stakeholders in university ranks, industry lab directors, government agencies, etc.

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Core Reference Documents

- US National AI R&D Strategic Plan, 2016 (currently being updated)
 - <u>https://www.nitrd.gov/news/national_ai_rd_strategic_plan.aspx</u>
- US National Robotics Roadmap, 2009, revised 2016:
 - <u>https://cra.org/ccc/wp-content/uploads/sites/2/2016/11/roadmap3-final-rs-1.pdf</u>
- 100 year study of AI, 2016 report:
 - <u>https://ai100.stanford.edu/sites/default/files/ai100report10032016fnl_singles.pdf</u>

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Identifying Societal Drivers

- 1. Boost Health and Quality of Life: Prevention of illness and elderly ailments, mental/behavioral health, reducing cost (25+% feasible) while improving care, remote patient care.
- 2. Lifelong Education and Training: Personalized, scalable education support. Improve the AI knowledge and skills of people who will lose jobs. Training next generation of AI specialists, data scientists, and software engineers
- **3. Reinvent Business Innovation and Competitiveness:** Evidence-driven companies, which would increase productivity and value and open new sectors/products
- 4. Accelerate Scientific Discovery and Technological Innovation: Biomedical, environmental, new materials, personalized services, robotics, self-driving cars, etc.
- **5. Social Justice and Policy:** Engaging and empowering disadvantaged communities. Improving civic and political discourse
- 6. Transform Cyber Defense and Security: AI driven systems can compensate for a relatively small cyber defense workforce, adversarial reasoning

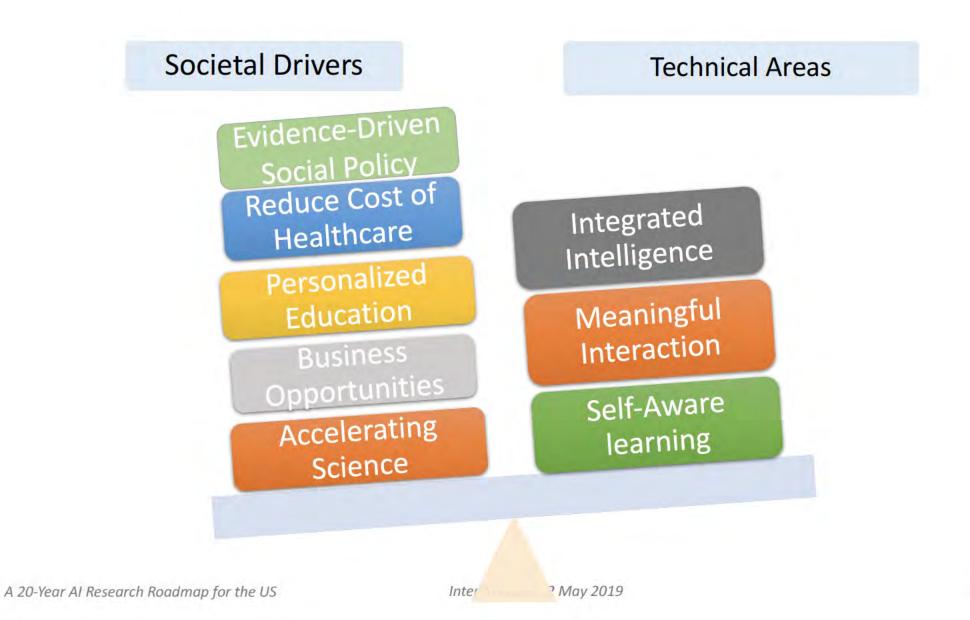
A 20-Year AI Research Roadmap for the US

Research Priorities

Integrated Intelligence

- Science of integrated intelligence
- Contextualized AI
- Open knowledge repositories
- Understanding human intelligence

Meaningful Interaction


- Collaboration
- Trust and responsibility
- Diversity of interaction channels
- Improving online interaction

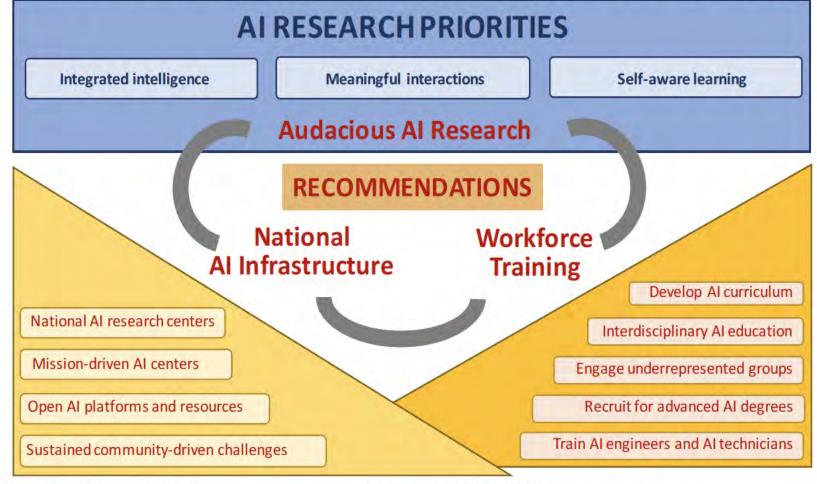
Self-Aware Learning

- Robust and trustworthy learning
- Deeper learning for challenging tasks
- Integrating symbolic and numeric representations
- Learning in integrated AI/Robotic systems

20

A 20-Year AI Research Roadmap for the US

A New Era of Audacious Al Research


- Audacious AI research in roadmap tackles broader AI goals
 - More integrative, requiring significant resources and diverse expertise
 - Hard for individual PIs to to stand the necessary research environments
- AI has become a mature science
 - Need for substantial experimental facilities in addition to theoretical research
- Other sciences have had significant infrastructure and concomitant research investments, but nothing so far for Al
 - Eg LIGO and LHC in particle physics
 - Eg Human Genome Project in medicine
 - Eg Hubble telescope in astronomy
- Need for substantial multi-decadal investments in AI

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Overview of Research Priorities and Recommendations

A 20-Year AI Research Roadmap for the US

Key Recommendations: National Infrastructure for AI and Workforce Training

AI Research Centers

- Focused on cross-cutting research themes
 - Examples: Center on AI Trust and Responsibility, Center on Integrated Intelligence, etc.
- Resources in each center would include at least:
 - 100 full time faculty (in AI and other relevant disciplines)
 - 50 visiting faculty fellows and industry fellows
 - 200 Al engineers
 - 500 full time students (graduate and undergraduate)
 - Computing and infrastructure support
- Multi-university centers with affiliates
- Multi-decadal funding at \$100M/yr levels
- Train students at all levels
- Small-scale example models: Allen Institute for AI, CMU's SEI, USC's ICT

Mission-Driven AI Centers

- Focused on societal drivers
 - Examples: Al-ready hospitals, Al-ready homes, Already schools, VR/Robotics labs, etc.
- Living laboratories for hands-on research and collection of unique data
- Operations as well as workforce training
- Directors must have substantial AI credentials
- Resources in each center would include at least:
 - 50 permanent AI researchers
 - 50 visitors from AI Research Centers
 - 100-200 Al engineers
 - 100 domain experts and staff (eg health experts collaborating in AI research)
- Multi-decadal funding at \$100M/yr levels
- Analogous to Google's DeepMind (larger scale, approx. 400 Al scientists + 600 Software developers), SLAC, NCAR, etc.

Main Recommendations

[I] Create Comprehensive National AI R&D Infrastructure to Develop the Next Generation of AI Technology

[II] Re-Conceptualize and Train an All-Encompassing AI Workforce

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

[I] National Infrastructure for AI:1) Open AI Platforms and Resources

- A shared ecosystem infrastructure for AI research
 - Components and services available for others to use and build on
- Open licenses, open source
- Example resources
 - An open knowledge network of knowledge about the world
 - Data repositories
 - Reproducible experimentation environments
 - Computational/cloud resources
- Wide range of contributors and contributions
 - Share research products
 - Experimental harness

A 20-Year AI Research Roadmap for the US

[I] National Infrastructure for AI:2) National AI Research Centers

- Focused on cross-cutting research themes
 - Examples: Center on AI Trust and Responsibility, Center on Integrated Intelligence, etc.
- Resources in each center would include *at least*:
 - 100 full time faculty (in AI and other relevant disciplines)
 - 50 visiting faculty fellows and industry fellows
 - 200 Al engineers
 - 500 full time students (graduate and undergraduate)
 - Computing and infrastructure support
- Multi-university centers
- Multi-decadal funding
- Train students at all levels
- Some possible small-scale example models: Allen Institute for AI, CMU's SEI, USC's ICT

A 20-Year AI Research Roadmap for the US

[I] National Infrastructure for AI:3) National Mission-Driven AI Centers

- Focused on societal drivers
 - Examples: AI-ready hospitals, AI-ready homes, VR/Robotics labs
- Living laboratories for hands-on research and collection of unique data
- Operations as well as workforce training
- Directors must have substantial AI credentials
- Resources in each center would include *at least*:
 - 50 permanent AI researchers
 - 50 visitors from
 - 100-200 AI engineers
 - 100 domain experts and staff (eg health experts collaborating in AI research)
- Multi-decadal funding
- Analogous to Google's DeepMind (larger scale, approx. 400 AI scientists + 600 Software developers), SLAC, NCAR, etc.

A 20-Year AI Research Roadmap for the US

[I] National Infrastructure for AI:4) Community-Driven Research Challenges

IOME ABOUT	ORGANIZATION	EVENTS NEWS	RESEARCH GALLERY INFO	
RoboCupSoccer	RoboCupRescue	RoboCup@Home	RoboCupIndustrial	RoboCupJunior
Humanoid	Robot	Open Plataform	RoboCup@Work	Soccer
Standard Platform Middle Size Small Size	Simulation	Domestic Standard Platform Social Standard Platform	Logistics	OnStage Rescue
Simulation				

- Challenges collaboratively designed by participants
- Challenges designed to drive research, address key tractable problems
- Governance: organizational structures to oversee activities and progress
- Break down complex problems in a divide-andconquer timeline approach
- Design arch over a long period of time, adjust for advances
- Creation of shared resources when needed
- Embedded metrics and expertise: the community develops the metrics to measure progress and also provides expertise

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

[II] Training AI Workforce

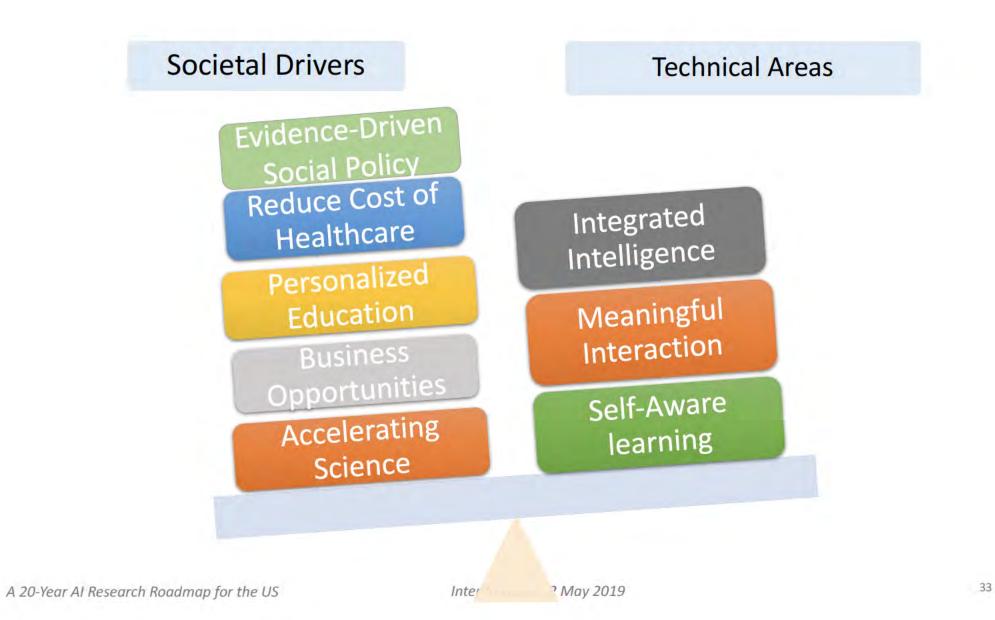
Key elements:

- Recruitment programs
- Broadening AI curriculum
- Incentivizing interdisciplinary AI studies (incl. ethics, policy, law)
- Education and training of AI engineers and data scientists beyond the traditional BA/BS, e.g.,
 - Community college programs
 - Certificate programs
 - Online post-baccalaureate programs
- Faculty and student retention

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Comments, Suggestions, Feedback?


• By email:

gil@isi.edu selman@cs.cornell.edu cccinfo@cra.org

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

ADDITIONAL DETAILS: RESEARCH PRIORITIES

Integrated Intelligence

Chairs: Marie desJardins, Simmons U Ken Forbus, Northwestern U

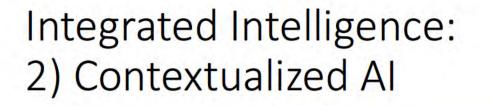
Technical Areas

- 1. Science of integrated intelligence
- 2. Contextualized AI
- 3. Open knowledge repositories
- 4. Understanding human intelligence

Societal Driver Vignettes

- Mental and behavioral health coach
- Accurate models of water reserves
- Speed up vaccine experiments
- Students in remote rural settings
- Retrain factory workers
- Resolve supply chain delays

Integrated Intelligence: 1) Science of Integrated AI


> Components of Intelligence

Combining deliberation with perception/control

Memory types and organization

Metareasoning and reflection

A 20-Year AI Research Roadmap for the US

Customization of general capabilities

Cognizance of environment

A 20-Year AI Research Roadmap for the US

Integrated Intelligence: 3) Open Knowledge Repositories

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

EPIC-2019-001-002657

Integrated Intelligence: 4) Understanding Human Intelligence

AI inspired by human intelligence

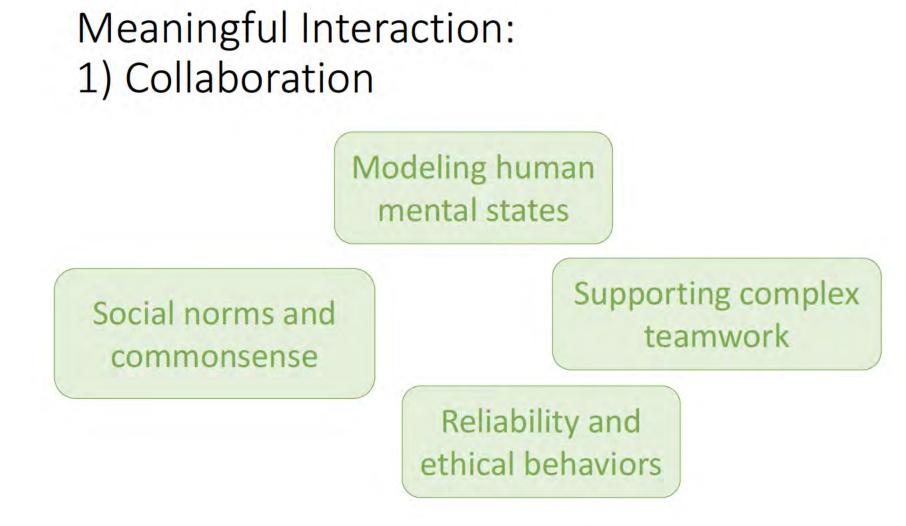
Al to understand human intelligence

Unifying theories of human and artificial intelligence

A 20-Year AI Research Roadmap for the US

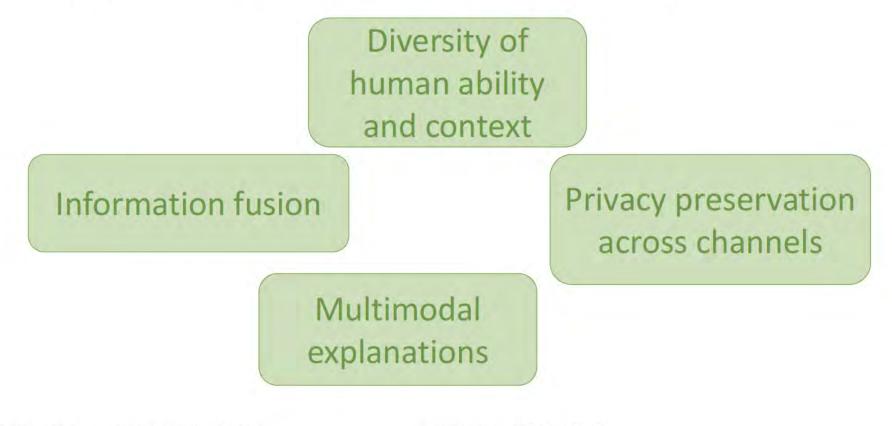
Meaningful Interaction

Chairs: Kathy McKeown, Columbia U Dan Weld, U Washington

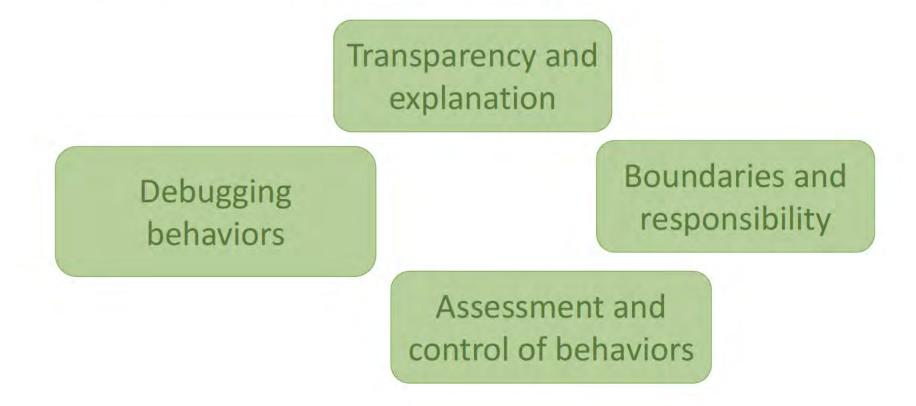

Technical Areas

- 1. Collaboration
- 2. Trust and responsibility
- 3. Diversity of interaction channels
- 4. Improving online interaction

Societal Driver Vignettes

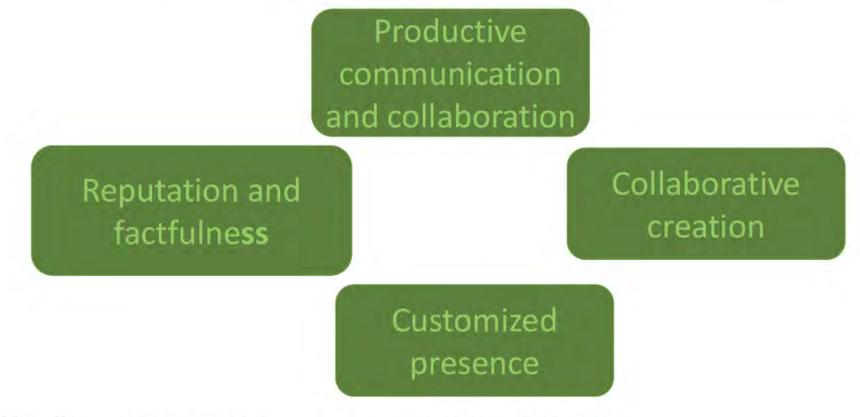

- At-home robot caregiver/helper
- Collaborative materials discovery
- Training for robot repair jobs
- Custom personal devices business
- Spreading opportunities for homeless youth

A 20-Year AI Research Roadmap for the US


A 20-Year AI Research Roadmap for the US

Meaningful Interaction: 2) Diversity of Interaction Channels

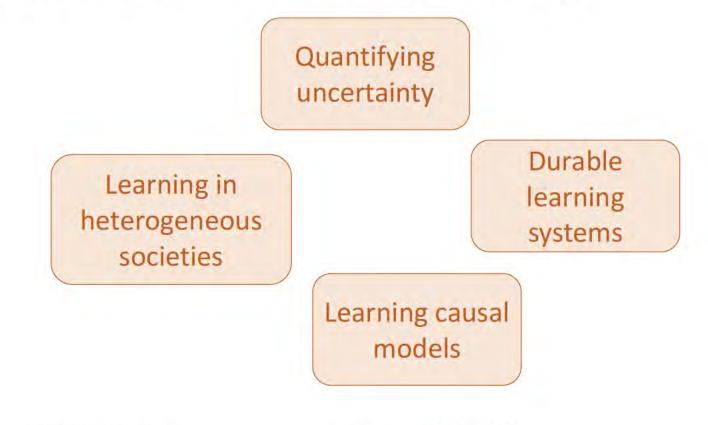
A 20-Year AI Research Roadmap for the US


Meaningful Interaction: 3) Trust and Responsibility

A 20-Year AI Research Roadmap for the US

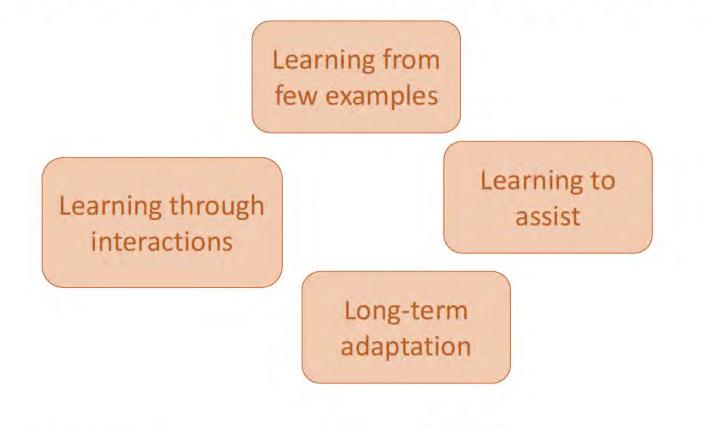
Interim report, 2 May 2019

Meaningful Interaction: 4) Improving Interactions Between People

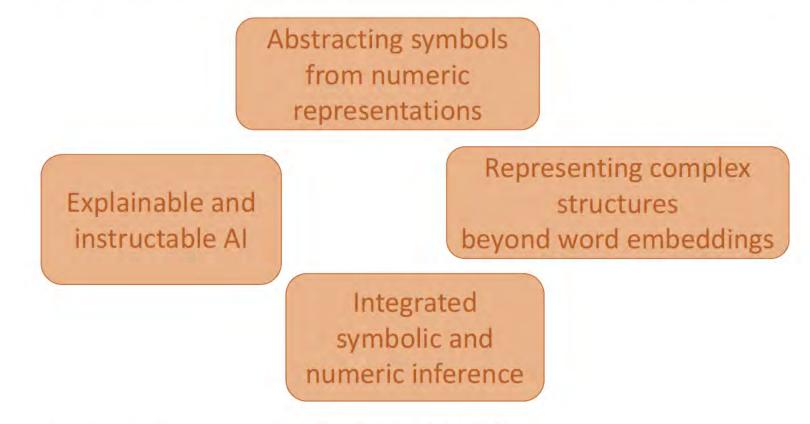

A 20-Year AI Research Roadmap for the US

Self-Aware Learnin	Chairs: Tom Dietterich, Oregon State U Fei-Fei Li, Stanford U
Technical Areas	Societal Driver Vignettes
 Robust and trustworthy learning Deeper learning for challenging tasks Integrating symbolic and numeric representations Learning in integrated Al/Robotic systems 	 Prevent opiate abuse Game design startup Climate models with physics and data Police training Food insecurity and distribution Resilient cyber-physical systems

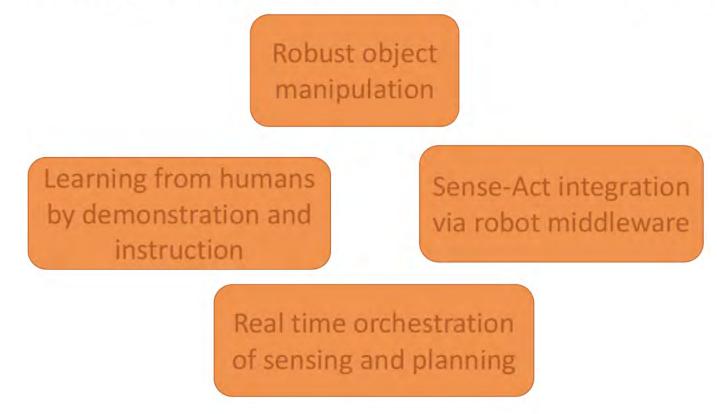
.


A 20-Year AI Research Roadmap for the US

Self-Aware Learning: 1) Robust and Trustworthy Learning


A 20-Year AI Research Roadmap for the US

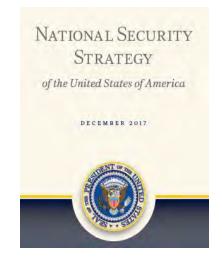
Self-Aware Learning: 2) Deeper Learning for Challenging Tasks


A 20-Year AI Research Roadmap for the US

Self-Aware Learning: 3) Integrating Symbolic and Numeric Representations

A 20-Year AI Research Roadmap for the US

Self-Aware Learning: 4) Learning in Integrated AI/Robotic Systems


A 20-Year AI Research Roadmap for the US

ADDITIONAL DETAILS: BACKGROUND AND CONTEXT

FY 2019, 2020 R&D Budget Priorities Memo

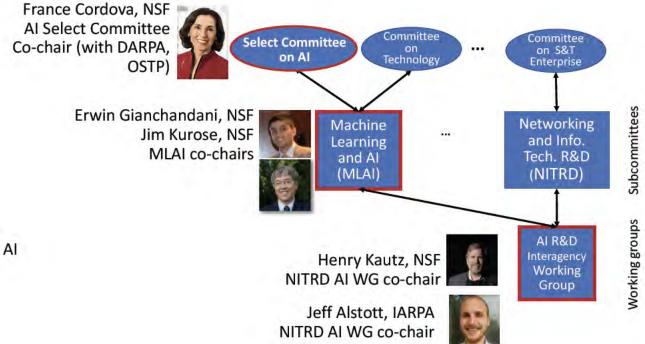
"Continued leadership in AI, quantum information science (QIS), and strategic computing is critically important to our national security and economic competitiveness. Agencies should invest in fundamental and applied AI research, including machine learning, autonomous systems, and applications at the human-technology frontier."

"...prioritize emerging technologies critical to economic growth and security, such as data science, encryption, autonomous technologies,... advanced computing technologies, and artificial intelligence. "

A 20-Year AI Research Roadmap for the US

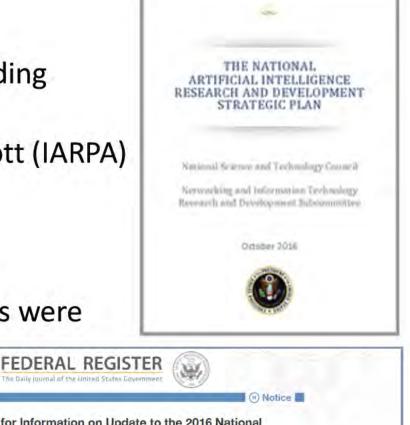
National Leadership in AI

Office of Science & Technology Policy (OSTP)



Lynne Parker, NSF Assistant Director for Al

Jim Kurose, NSF Former Assistant Director for AI


National Science and Technology Council (NSTC)

A 20-Year AI Research Roadmap for the US

US National AI Research & Development Strategic Plan

- NITRD Working Group of 40+ Federal Funding Agencies
- Co-Chairs: Henry Kautz (NSF) and Jeff Astott (IARPA)
- April 2019: Update to 2016 Plan and Implementation Report
- Updating 2016 National AI Research and Development Strategic Plan (RFI responses were due Oct 26)

Request for Information on Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan

A 20-Year Al Research Roadmap for the US

Interim report, 2 May 2019

AI Presence and Overall Trends in the US

- Al has gone from an academic research area to permeating our lives
 - Significant impact on society
 - Untapped potential
- Significant influence of AI in innovation and stimulating the economy
 - White house meeting in May 2018
- Concern about safety and transparency of this technology leads to questions for AI research community about how to establish policy
- Concerted initiatives in government and in academia
 - Joint Al Center
- Increases in federal funding investments (DARPA \$2B, NSF, etc)

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

US R&D Leadership: Driven by Major Investments

- Moon Landing
- Human Genome Project
- Hubble Telescope
- LIGO Gravitational Waves

Apollo Program 1960-'72: 25 Billion 2019: 144 Billion

Hubble Telescope 1990: \$1.5 Billion 2019: \$3 Billion

Human Genome Project 1991: \$2.7 Billion 2019: \$5 Billion

LIGO and Gravitational Waves 1992: largest NSF-funded project 2019: \$1.1 Billion

A 20-Year AI Research Roadmap for the US

Major International Al Investments: China R&D

Chinese Views on the Importance of AI

1. China's leadership – including President Xi Jinping – believes that being at the forefront in AI technology is critical to the future of global military and economic power competition.

- Just in 2019, China is establishing at least 4 National AI R&D Centers of Excellence. Each with \$50M/yr support and affiliated with major universities (e.g. Peking U and Tsinghua). Each center will employ hundreds of AI scientists and software developers.
- Total Chinese AI R&D investments over the next 5 years is in the billions of dollars.
- Goal: To become world leader in AI by 2030.

4. Despite expressing concern on AI arms races, most of China's leadership sees increased military usage of AI as inevitable and is aggressively pursuing it. China already exports armed autonomous platforms and surveillance AI.

A 20-Year AI Research Roadmap for the US

Interim report, 2 May 2019

Forbes Artificial Intelligence, China And The U.S. - How The U.S. Is Losing The Technology War

Opinion The New York Times China's Challenge Is America's Opportunity

By L. Rafael Reif

Dr. Reif is president of the Massachusetts Institute of Technology.

US Congressional Report Report: China will outspend US on Al research by end of 2018

Major International AI Investments: China on Education

https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy

action to improve the size and quality of China's AI talent pool.⁴⁰ In April 2018, China's Ministry of Education (MOE) launched its *AI Innovation Action Plan for Colleges and Universities*. Among other elements, the plan:

- Will create "50 world-class teaching materials for undergraduate and graduate studies" related to AI applications for specific industries;
- Will create "50 national-level high-quality online open courses";
- Will establish "50 artificial intelligence faculties, research institutions, or interdisciplinary research centers."⁴¹

In a separate initiative, the MOE also plans to launch a new five-year AI talent training program to train 500 more AI instructors and 5,000 more top students at top Chinese universities.⁴²

This program is in full operation. It's currently in its 2nd year. 56

A 20-Year AI Research Roadmap for the US

Major International Al Investments: EU

Al Hub Europe European Union To Invest 20 Billion Furos in Al

SHOLLDN'T THE US?

FRANCE, CHINA, AND THE EU

nature

Europe's next €1-billion science projects: six teams make it to final round AI enhancement included in the shortlist

The commission already supports three scientific mega-projects know as FET Flagships - on the brain, graphene and quantum technologies which are each funded to the tune of around €1 billion over 10 years. The high-profile projects aim to make paradigm-shifting advances in

WIRED

Germany plans 3 billion in Al investment

WIRED

The French government will spend €1.5 billion (\$1.85 billion) over five years to support research in the field, encourage startups, and collect data that can be used, and shared, by engineers.

Bloomberg

U.K. Unveils \$1.4 Billion Drive Into Artificial Intelligence

U.S. tech giants, European telecoms firms, Japanese venture capital and the U.K. government has put together a 1 billion-pound (\$1.4 billion) investment into the U.K. artificial intelligence industry, as governments weigh how to compete with China.

The deal comprises a total of 300 million pounds of private financing, 300 million pounds of new government spending in addition to 400 million pounds the state has already announced.

A 20-Year AI Research Roadmap for the US

COMPUTING COMMUNITY CONSORTIUM

The **mission** of Computing Research Association's Computing Community Consortium (CCC) is to **catalyze** the computing research community and **enable** the pursuit of innovative, high-impact research.

Community Consortium

ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE

The Association for the Advancement of Artificial Intelligence (AAAI) is an international scientific society devoted to promote research in, and responsible use of, artificial intelligence. It has more than 250 elected Fellows in diverse research areas of AI.

AAAI also aims to increase public understanding of AI, improve the teaching and training of AI practitioners, and provide guidance for research planners and funders concerning the importance and potential of current AI developments and future directions.

