Palladium

Michael Aday
Senior Program Manager
Windows Trusted Platform Technologies
Microsoft Corporation
Agenda

- Introduction and Motivation
- Architecture
- Where’s the Value
- Policy
- Summary
- Q&A
Introduction and Motivation
What is Palladium?

- Palladium (Pd) is a set of new security-oriented capabilities in Windows
 - Enabled by new hardware
 - New Software: Trusted Security Kernel (Nexus) and Nexus Computing Agents
- Goal is to "protect software from software"
 - Defend against malicious software running in Ring 0
- Enable and safeguard decentralized Trusted Computing Base ("TCB") on Open Systems
Trusted Open Systems

- Our OSs are designed for:
 - Features
 - Performance
 - Openness
 - Applications
 - Drivers
 - Core OS components
 - Ease of use, and
 - Security
 - Contrast this with the design of a smartcard OS
Terminology

- "Palladium" (a.k.a. Pd)
 - Codename for a set of Windows features built on new HW
- Nexus
 - secure kernel in Pd
- NCA
 - Nexus Computing Agent or Nexus Controlled Agent
- Sealed Storage
 - Method the nexus uses to encrypt and store data
- Authenticated Boot
 - Method used to securely load nexus
- Trusted I/O
 - Secure input and output systems managed by the nexus
- SSC (a.k.a. TPM, SCP, SSP)
 - Security Support Component - Security chip on the motherboard
Mechanism
Construct Security Perimeter Dynamically

- Mechanism couples
 - Software isolation (Curtained Memory --- establish TCB)
 - Software authentication (Attestation --- extend TCB)
 - Secrets for software (Sealed Storage --- persist TCB state)
 - Secure I/O (Include trusted user)

- Credential based security assertions, permissions and authentication
 - A la Lampson, Rivest, Abadi, etc.
Palladium At 50,000 Feet: 1

- How do you preserve the flexibility and extensibility that contributes so much to the entire PC ecosystem, while still providing end users with a safe place to do important work?
- In particular, how can you keep anything secret, when **pluggable** kernel components control the machine?
Palladium At 50,000 Feet: 2

- The solution: subdivide the execution environment by adding a new mode flag to the CPU.

- The CPU is either in “standard” mode or “trusted” mode.
- Pages of physical memory can be marked as “trusted.” Trusted pages can only be accessed when the CPU is in trusted mode.
Agents also need to let the user enter secrets and to display secrets to the user.

Input is secured by a trusted USB ‘hub’ for KB and mouse that carries on a protected conversation with the nexus.

Output is secured by a trusted GPU that carries on a crypto-protected conversation with the nexus.

This gives us “fingertip-to-eyeball” security.
Overarching Principles

- Palladium will be built to the highest standard of security practice.
- A Palladium PC must be able to boot and run any OS and any software from any vendor.
- The Palladium Trusted Computing Base (TCB) from Microsoft will be made available for review.
- A Palladium PC must continue to run legacy applications and device drivers.
- Palladium will be designed as an opt-in system.
- Anyone who can write applications for the PC can write applications that take advantage of Palladium.
Overarching Principles (continued)

- Palladium won’t stop piracy.
- Palladium systems will provide the means to protect user privacy better than any operating system does today.
- User information is not a requirement for Palladium to work.
- Palladium may not withstand determined attackers with physical access to an individual machine, but will be highly BORE (Break Once, Run Everywhere) resistant.
- Palladium enables 360° of policy enforcement.
Architecture
How Palladium Works

- Leverages CPU enhancements (new modes) to "wall off" a protected area of memory
- Small Security Kernel ("nexus") abstracts hardware and provides programmability
- Software components that use secrets run behind the wall ("Nexus Computing Agents" or NCAs)
- Secrets bound to software identity and platform
- Secure user interaction through secure video, keyboard and mouse channels
Nexus in the OS
What's Familiar

- Private address space
- Contain EXE's
 - (may or may not support DLLs)
- Ownership
- Normal process-control block
- Access rights
- Thread creation, etc...
Nexus in the OS

What's Different

- Process separation is stronger
 - Main OS/apps unconditionally excluded
 - Debugging, memory inspection by the Nexus/agents is strictly controlled

- The code that can be loaded into a NCA is restricted by NCA policy

- NCAs have privileged access to one or more cryptographic keys (based on code identity)
 - Basis for authentication and authorization
 - Also decentralized
Palladium Security Model

- Agents have less privileges than applications (in general)
- Just because you’re protected when running, doesn’t mean that you’re protected on the disk
- Code identity is a key concept in Pd
SSC
Security Support Component

- Think “smart-card soldered to the motherboard”
- Cheap, fixed-function device
- Contains
 - At least an AES key and an RSA key pair
 - AES key & RSA private key never leave the chip
 - Registers: e.g. the “PCR” (platform configuration register) that contains the digest of the running Nexus
- Must be close to the chipset (e.g. not a real smartcard) because it must be involved in Nexus initialization
- SSC can be TCPA TPM 1.2
Hardware Changes

- CPU changes
- MMU changes
- Southbridge (LPC bus interface) changes
- Security Support Component (SSC)
 - New chip on the motherboard (LPC bus)
- Trusted USB hub
 - May be on motherboard, in keyboard, or anywhere in between
- Trusted GPU
Hardware Services for Nexus

- Hardware provides nexus with:
 - Strong process isolation
 - Per nexus keys for persistent secret protection
 - Secure path to and from the user
 - Attestation

- Attestation breaks new ground
 - Facts about “things” (SW, users, machines, services) can be proved to (and believed by) remote entities.

- Nexus returns the favor for its NCAs
 - Nexus to NCA services can be a bit richer
Where’s the Value?
Applications

- System Management
 - Secure Boot
 - Administration
 - Installation, upgrade and update management
 - Login, key/password management, crypto engine
 - Monitoring machine health including virus checking

- High assurance applications
 - Banking, secure transactions
 - Private IM

- Shared Resources
 - Kiosks
 - Home Machine using corporate apps
Applications (continued)

- Collaborative Apps
 - Multiplayer Games
 - Negotiations
 - Bidding
- Decentralize Access Control
 - Web Services
 - Cross Domain Authentication and Authorization
- DRM
 - Enterprise
 - Privacy/Consumer
 - Identity and usage information, health and financial records
 - Mass market content
 - Books, movies, audio, video
Attestation

- Attestation lets a remote client know what SW is running
 - OS / Nexus
 - Application
 - Client policy (virus checker, admin access, etc.)
- Attestation is an authentication technology
 - But more than "simple signing"
- Enables authentication of a software configuration (nexus, application process)
Secure User Input and Output

- Is the banking application being driven by a user or a virus?
- Is a Trojan modifying the dialog that contains the transaction I’m authorizing?
- Is a rogue application viewing the video frame buffer while I type a password?
- **User / Application Relationship**
 - Protected path between user and application
Pd Misconceptions

- Palladium will censor or disable content without user permission
 - As designed, no such mandatory policy can be in Pd
- Palladium will lock out vendors Microsoft doesn’t approve of
 - No required Microsoft signatures to use Pd
- Palladium is not controlled by user
 - All Pd programs can be run only if authorized by user
- Palladium is “super” virus spreader
 - Palladium applications do not run at elevated privilege
- Palladium NCA is not debuggable
 - Yes it is. Tag in manifest to turn on debugging.
Palladium Security Model

- Underlying access control system
 - MAC/DAC
- Based on credentials
 - Code credentials
 - User credentials
- Layered model of security
 - Seal/Unseal can be understood as special instances of a code based ACL policy
- Mandatory access control policy
 - Likely candidates: MLS and Domain Type Enforcement
Policy Issues

- Some of the technical issues we have to solve to make Palladium successful also have policy components to them. For example:

- How do we in practice build an “attestable” TCB?
 - “Attestable” == open, auditable, comprehensible and provable to a remote party

- Since the Pd RSA key pair is unique to the platform, what steps should we take to defend against traffic analysis of user behavior?
Privacy of Machine Identities

- The issue: Palladium uses at least two sets of unique hardware keys (one AES key, one RSA key pair):
 - Essentially equivalent to unique machine identifiers
 - But this is the only way we can keep your stuff safe!

- Sealed Storage:
 - Uses a unique AES key, but the algorithms are:
 - Opt-in (user designates what software can access functions)
 - Randomizing (can’t decide whether two ciphertexts were created on same machine)

- Attestation:
 - Uses a unique RSA key, but is designed to authenticate the platform
 - Opt-in (user designates what software can access functions)
 - We strictly control HW authentication key disclosure

- The hardware has privacy safeguards built into it
 - Access to the RSA public key components is restricted
 - In the current design, only one export of RSA public key is allowed per power cycle
More Information

- Subscribe to Newsletter:
 Send email to PdInfo@microsoft.com
Questions?